High Performance Materials and Devices for High-Speed Electronic Systems

10.1142/11156 ◽  
2018 ◽  
Author(s):  
F Jain ◽  
C Broadbridge ◽  
H Tang ◽  
M Gherasimova
1987 ◽  
Vol 108 ◽  
Author(s):  
R. C. Frye

ABSTRACTNew, high temperature superconducting materials could eventually be used for interconnections in electronic systems. Such interconnections would undoubtedly cost more to implement than conventional ones, so the most likely applications would be for complex, high-speed systems that could benefit from the performance advantages of a resistance-free interconnecting medium. The problem with conventional conductors in these systems is that the resistance of wires increases quadratically as dimensions are scaled down. The most important advantage offered by superconductors is that they are not linked to this scaling rule. Their principal limitation is the maximum current density that they will support and this determines the range of applications for which they are superior to conventional conductors. An analysis will be presented which examines the relative advantages of superconductors for different critical current densities, wire dimensions and system sizes.If their critical current densities are adequate, and if they can statisfy a number of processing criteria, then superconductors could find useful applications in a number of high performance electronic systems. The most likely applications will be those demanding very high interconnection densities. Several of these systems will be discussed.


Author(s):  
Xiaolin Chen ◽  
Hui Zhang ◽  
Will Miller

Technology trends toward higher speed and density devices have pushed high performance electronic system design to its limits. With fine miniaturization of very-large-scale integrated (VLSI) circuits and rapid increase in the working frequency of system-on-a-chip (SoC), the signal integrity has become a major concern. As the operating frequencies enter the gigahertz range, signal integrity issues such as cross talk, power-ground-plane voltage bounce, and substrate losses can no longer be neglected. In order to design high-performance electronic systems with fast time-to-market, it is often needed to analyze whole or part of the system at one fundamentally deeper level of physics. It has begun to be recognized that electromagnetic (EM) field analysis needs to be rigorously included as an addition to traditional circuit simulation. A common problem in this practice is the lack of efficient tools that enable engineers to easily transfer circuit board design data into EM solvers. To partially solve this problem, ACIS SAT has been introduced as a standard data exchange format and been adopted by many software vendors for data import and export. However, efficient data transfer remains a problem as the geometry created in the design package becomes static and no longer feature-based once imported into the simulation package. In this paper, automatic feature recognition algorithms are implemented to help extract features and parameters from the imported static model in SAT format. Case studies will be provided for some representative high speed electronics designs. This work is supported by Research & Technology Development Grant Program of Washington Technology Center with a goal to achieve improved design process for high-speed electronic systems. The developed tool has a potential to speed up the current design process by eliminating laborious manual preparation of design data for EM simulation and allow what-if analysis to be automated to highlight likely signal integrity issues.


10.1142/11502 ◽  
2019 ◽  
Author(s):  
F Jain ◽  
C Broadbridge ◽  
M Gherasimova ◽  
H Tang

1994 ◽  
Vol 05 (03) ◽  
pp. 213-252 ◽  
Author(s):  
KEH-CHUNG WANG ◽  
RANDALL B. NUBLING ◽  
KEN PEDROTTI ◽  
NENG-HAUNG SHENG ◽  
PETER M. ASBECK ◽  
...  

AlGaAs/GaAs Heterojunction Bipolar Transistor (HBT) technology has emerged as an important IC technology for high performance electronic systems. Many outstanding circuits have been demonstrated as a result of the AlGaAs/GaAs HBTs high speed, high accuracy and its semi-insulating substrate. Several GaAs HBT manufacturing lines have been established; some of which are shipping products. In this paper, we describe AlGaAs/GaAs HBT technology, summarize some key and representative circuits in analog, A/D conversion and digital applications, and provide prospects of GaAs HBT research.


Author(s):  
N. Yoshimura ◽  
K. Shirota ◽  
T. Etoh

One of the most important requirements for a high-performance EM, especially an analytical EM using a fine beam probe, is to prevent specimen contamination by providing a clean high vacuum in the vicinity of the specimen. However, in almost all commercial EMs, the pressure in the vicinity of the specimen under observation is usually more than ten times higher than the pressure measured at the punping line. The EM column inevitably requires the use of greased Viton O-rings for fine movement, and specimens and films need to be exchanged frequently and several attachments may also be exchanged. For these reasons, a high speed pumping system, as well as a clean vacuum system, is now required. A newly developed electron microscope, the JEM-100CX features clean high vacuum in the vicinity of the specimen, realized by the use of a CASCADE type diffusion pump system which has been essentially improved over its predeces- sorD employed on the JEM-100C.


Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

One of the major advancements applied to scanning electron microscopy (SEM) during the past 10 years has been the development and application of digital imaging technology. Advancements in technology, notably the availability of less expensive, high-density memory chips and the development of high speed analog-to-digital converters, mass storage and high performance central processing units have fostered this revolution. Today, most modern SEM instruments have digital electronics as a standard feature. These instruments, generally have 8 bit or 256 gray levels with, at least, 512 × 512 pixel density operating at TV rate. In addition, current slow-scan commercial frame-grabber cards, directly applicable to the SEM, can have upwards of 12-14 bit lateral resolution permitting image acquisition at 4096 × 4096 resolution or greater. The two major categories of SEM systems to which digital technology have been applied are:In the analog SEM system the scan generator is normally operated in an analog manner and the image is displayed in an analog or "slow scan" mode.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

Sign in / Sign up

Export Citation Format

Share Document