Early Seizure Detection Using Neuronal Potential Similarity: A Generalized Low-Complexity and Robust Measure

2015 ◽  
Vol 25 (05) ◽  
pp. 1550019 ◽  
Author(s):  
Mojtaba Bandarabadi ◽  
Jalil Rasekhi ◽  
Cesar A. Teixeira ◽  
Theoden I. Netoff ◽  
Keshab K. Parhi ◽  
...  

A novel approach using neuronal potential similarity (NPS) of two intracranial electroencephalogram (iEEG) electrodes placed over the foci is proposed for automated early seizure detection in patients with refractory partial epilepsy. The NPS measure is obtained from the spectral analysis of space-differential iEEG signals. Ratio between the NPS values obtained from two specific frequency bands is then investigated as a robust generalized measure, and reveals invaluable information about seizure initiation trends. A threshold-based classifier is subsequently applied on the proposed measure to generate alarms. The performance of the method was evaluated using cross-validation on a large clinical dataset, involving 183 seizure onsets in 1785 h of long-term continuous iEEG recordings of 11 patients. On average, the results show a high sensitivity of 86.9% (159 out of 183), a very low false detection rate of 1.4 per day, and a mean detection latency of 13.1 s from electrographic seizure onsets, while in average preceding clinical onsets by 6.3 s. These high performance results, specifically the short detection latency, coupled with the very low computational cost of the proposed method make it adequate for using in implantable closed-loop seizure suppression systems.

2020 ◽  
Author(s):  
Juan José Murillo Fuentes ◽  
irene santos ◽  
José Carlos Aradillas ◽  
Matilde Sánchez-Fernández

<div> <div> <div> <p>We propose a new iterative detection and decoding algorithm for multiple-input multiple-output (MIMO) based on expectation propagation (EP) with application to massive MIMO scenarios. Two main results are presented. We first introduce EP to iteratively improve the Gaussian approximations of both the estimation of the posterior by the MIMO detector and the soft output of the channel decoder. With this novel approach, denoted by double-EP (DEP), the convergence is very much improved with a computational complexity just two times the one of the linear minimum mean square error (LMMSE), as illustrated by the included experiments. Besides, as in the LMMSE MIMO detector, when the number of antennas increases, the computational cost of the matrix inversion operation required by the DEP becomes unaffordable. In this work we also develop approaches of DEP where the mean and the covariance matrix of the posterior are approximated by using the Gauss-Seidel and Neumann series methods, respectively. This low-complexity DEP detector has quadratic complexity in the number of antennas, i.e., the same as the low-complexity LMMSE techniques. Experimental results show that the new low-complexity DEP achieves the performance of the DEP as the ratio between the number of transmitting and receiving antennas decreases </p> </div> </div> </div>


2020 ◽  
Author(s):  
Juan José Murillo Fuentes ◽  
irene santos ◽  
José Carlos Aradillas ◽  
Matilde Sánchez-Fernández

<div> <div> <div> <p>We propose a new iterative detection and decoding algorithm for multiple-input multiple-output (MIMO) based on expectation propagation (EP) with application to massive MIMO scenarios. Two main results are presented. We first introduce EP to iteratively improve the Gaussian approximations of both the estimation of the posterior by the MIMO detector and the soft output of the channel decoder. With this novel approach, denoted by double-EP (DEP), the convergence is very much improved with a computational complexity just two times the one of the linear minimum mean square error (LMMSE), as illustrated by the included experiments. Besides, as in the LMMSE MIMO detector, when the number of antennas increases, the computational cost of the matrix inversion operation required by the DEP becomes unaffordable. In this work we also develop approaches of DEP where the mean and the covariance matrix of the posterior are approximated by using the Gauss-Seidel and Neumann series methods, respectively. This low-complexity DEP detector has quadratic complexity in the number of antennas, i.e., the same as the low-complexity LMMSE techniques. Experimental results show that the new low-complexity DEP achieves the performance of the DEP as the ratio between the number of transmitting and receiving antennas decreases </p> </div> </div> </div>


2021 ◽  
Author(s):  
Artur Jordão Lima Correia ◽  
William Robson Schwartz

Modern visual pattern recognition models are based on deep convolutional networks. Such models are computationally expensive, hindering applicability on resource-constrained devices. To handle this problem, we propose three strategies. The first removes unimportant structures (neurons or layers) of convolutional networks, reducing their computational cost. The second inserts structures to design architectures automatically, enabling us to build high-performance networks. The third combines multiple layers of convolutional networks, enhancing data representation at negligible additional cost. These strategies are based on Partial Least Squares (PLS) which, despite promising results, is infeasible on large datasets due to memory constraints. To address this issue, we also propose a discriminative and low-complexity incremental PLS that learns a compact representation of the data using a single sample at a time, thus enabling applicability on large datasets.


2020 ◽  
Vol 23 (10) ◽  
pp. 1010-1022
Author(s):  
Emrah Dural

Aim and scope: Due to the serious toxicological risks and their widespread use, quantitative determination of phthalates in cosmetic products have importance for public health. The aim of this study was to develop a validated simple, rapid and reliable high-performance liquid chromatography (HPLC) method for the determination of phthalates which are; dimethyl phthalate (DMP), diethyl phthalate (DEP), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP), di(2- ethylhexyl) phthalate (DEHP), in cosmetic products and to investigate these phthalate (PHT) levels in 48 cosmetic products marketing in Sivas, Turkey. Materials and Methods: Separation was achieved by a reverse-phase ACE-5 C18 column (4.6 x 250 mm, 5.0 μm). As the mobile phase, 5 mM KH2PO4 and acetonitrile were used gradiently at 1.5 ml min-1. All PHT esters were detected at 230 nm and the run time was taking 21 minutes. Results: This method showed the high sensitivity value the limit of quantification (LOQ) values for which are below 0.64 μg mL-1 of all phthalates. Method linearity was ≥0.999 (r2). Accuracy and precision values of all phthalates were calculated between (-6.5) and 6.6 (RE%) and ≤6.2 (RSD%), respectively. Average recovery was between 94.8% and 99.6%. Forty-eight samples used for both babies and adults were successfully analyzed by the developed method. Results have shown that, DMP (340.7 μg mL-1 ±323.7), DEP (1852.1 μg mL-1 ± 2192.0), and DBP (691.3 μg mL-1 ± 1378.5) were used highly in nail polish, fragrance and cream products, respectively. Conclusion: Phthalate esters, which are mostly detected in the content of fragrance, cream and nail polish products and our research in general, are DEP (1852.1 μg mL-1 ± 2192.0), DBP (691.3 μg mL-1 ± 1378.5) and DMP (340.7 μg mL-1 ±323.7), respectively. Phthalates were found in the content of all 48 cosmetic products examined, and the most detected phthalates in general average were DEP (581.7 μg mL-1 + 1405.2) with a rate of 79.2%. The unexpectedly high phthalate content in the examined cosmetic products revealed a great risk of these products on human health. The developed method is a simple, sensitive, reliable and economical alternative for the determination of phthalates in the content of cosmetic products, it can be used to identify phthalate esters in different products after some modifications.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2163
Author(s):  
Dongjin Kim ◽  
Seungyong Han ◽  
Taewi Kim ◽  
Changhwan Kim ◽  
Doohoe Lee ◽  
...  

As the safety of a human body is the main priority while interacting with robots, the field of tactile sensors has expanded for acquiring tactile information and ensuring safe human–robot interaction (HRI). Existing lightweight and thin tactile sensors exhibit high performance in detecting their surroundings. However, unexpected collisions caused by malfunctions or sudden external collisions can still cause injuries to rigid robots with thin tactile sensors. In this study, we present a sensitive balloon sensor for contact sensing and alleviating physical collisions over a large area of rigid robots. The balloon sensor is a pressure sensor composed of an inflatable body of low-density polyethylene (LDPE), and a highly sensitive and flexible strain sensor laminated onto it. The mechanical crack-based strain sensor with high sensitivity enables the detection of extremely small changes in the strain of the balloon. Adjusting the geometric parameters of the balloon allows for a large and easily customizable sensing area. The weight of the balloon sensor was approximately 2 g. The sensor is employed with a servo motor and detects a finger or a sheet of rolled paper gently touching it, without being damaged.


Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 749
Author(s):  
Julia Butt ◽  
Rajagopal Murugan ◽  
Theresa Hippchen ◽  
Sylvia Olberg ◽  
Monique van Straaten ◽  
...  

The emerging SARS-CoV-2 pandemic entails an urgent need for specific and sensitive high-throughput serological assays to assess SARS-CoV-2 epidemiology. We, therefore, aimed at developing a fluorescent-bead based SARS-CoV-2 multiplex serology assay for detection of antibody responses to the SARS-CoV-2 proteome. Proteins of the SARS-CoV-2 proteome and protein N of SARS-CoV-1 and common cold Coronaviruses (ccCoVs) were recombinantly expressed in E. coli or HEK293 cells. Assay performance was assessed in a COVID-19 case cohort (n = 48 hospitalized patients from Heidelberg) as well as n = 85 age- and sex-matched pre-pandemic controls from the ESTHER study. Assay validation included comparison with home-made immunofluorescence and commercial enzyme-linked immunosorbent (ELISA) assays. A sensitivity of 100% (95% CI: 86–100%) was achieved in COVID-19 patients 14 days post symptom onset with dual sero-positivity to SARS-CoV-2 N and the receptor-binding domain of the spike protein. The specificity obtained with this algorithm was 100% (95% CI: 96–100%). Antibody responses to ccCoVs N were abundantly high and did not correlate with those to SARS-CoV-2 N. Inclusion of additional SARS-CoV-2 proteins as well as separate assessment of immunoglobulin (Ig) classes M, A, and G allowed for explorative analyses regarding disease progression and course of antibody response. This newly developed SARS-CoV-2 multiplex serology assay achieved high sensitivity and specificity to determine SARS-CoV-2 sero-positivity. Its high throughput ability allows epidemiologic SARS-CoV-2 research in large population-based studies. Inclusion of additional pathogens into the panel as well as separate assessment of Ig isotypes will furthermore allow addressing research questions beyond SARS-CoV-2 sero-prevalence.


Author(s):  
Mohammed R. Elkobaisi ◽  
Fadi Al Machot

AbstractThe use of IoT-based Emotion Recognition (ER) systems is in increasing demand in many domains such as active and assisted living (AAL), health care and industry. Combining the emotion and the context in a unified system could enhance the human support scope, but it is currently a challenging task due to the lack of a common interface that is capable to provide such a combination. In this sense, we aim at providing a novel approach based on a modeling language that can be used even by care-givers or non-experts to model human emotion w.r.t. context for human support services. The proposed modeling approach is based on Domain-Specific Modeling Language (DSML) which helps to integrate different IoT data sources in AAL environment. Consequently, it provides a conceptual support level related to the current emotional states of the observed subject. For the evaluation, we show the evaluation of the well-validated System Usability Score (SUS) to prove that the proposed modeling language achieves high performance in terms of usability and learn-ability metrics. Furthermore, we evaluate the performance at runtime of the model instantiation by measuring the execution time using well-known IoT services.


Author(s):  
Denys Rozumnyi ◽  
Jan Kotera ◽  
Filip Šroubek ◽  
Jiří Matas

AbstractObjects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers. We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous, complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localized with higher temporal resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall, and velocity estimation.


Author(s):  
Antonia Perju ◽  
Nongnoot Wongkaew

AbstractLateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 700
Author(s):  
Yufei Zhu ◽  
Zuocheng Xing ◽  
Zerun Li ◽  
Yang Zhang ◽  
Yifan Hu

This paper presents a novel parallel quasi-cyclic low-density parity-check (QC-LDPC) encoding algorithm with low complexity, which is compatible with the 5th generation (5G) new radio (NR). Basing on the algorithm, we propose a high area-efficient parallel encoder with compatible architecture. The proposed encoder has the advantages of parallel encoding and pipelined operations. Furthermore, it is designed as a configurable encoding structure, which is fully compatible with different base graphs of 5G LDPC. Thus, the encoder architecture has flexible adaptability for various 5G LDPC codes. The proposed encoder was synthesized in a 65 nm CMOS technology. According to the encoder architecture, we implemented nine encoders for distributed lifting sizes of two base graphs. The eperimental results show that the encoder has high performance and significant area-efficiency, which is better than related prior art. This work includes a whole set of encoding algorithm and the compatible encoders, which are fully compatible with different base graphs of 5G LDPC codes. Therefore, it has more flexible adaptability for various 5G application scenarios.


Sign in / Sign up

Export Citation Format

Share Document