Protective Effects of Ginkgo biloba, Panax ginseng, and Schizandra chinensis Extract on Liver Injury in Rats

2007 ◽  
Vol 35 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
Hsin-Fang Chang ◽  
Yun-Ho Lin ◽  
Chia-Chou Chu ◽  
Shu-Ju Wu ◽  
Ya-Hui Tsai ◽  
...  

This study investigated the effects of the combined extracts of Ginkgo biloba, Panax ginseng, and Schizandra chinensis at different doses on hepatic antioxidant status and fibrosis in rats with carbon tetrachloride ( CCl 4)-induced liver injury. Male Sprague-Dawley rats ( n = 8–12 per group) were divided into the control, CCl 4, CCl 4 + silymarin (0.35%), CCl 4 + low-dose herbal extract (0.24% of Ginkgo biloba, Panax ginseng, and Schizandra chinensis extract at 1:1:1; LE), and CCl 4 + high-dose herbal extract (1.20% of the same herbal extract; HE) groups. Silymarin or herbal extract was orally given to rats a week before chronic intraperitoneal injection with CCl 4 for 6 weeks. The pathological results showed that herbal extract suppressed hepatic bile duct proliferation, and low-dose herbal extract inhibited liver fibrosis. Hepatic superoxide dismutase (SOD) activity was lower in the CCl 4 group, but there was no difference in the silymarin or herbal extract treated groups compared to the control group. Hepatic catalase activity and the ratio of reduced to oxidized glutathione were significantly higher ( p < 0.05) in the HE group than those in the CCl 4 group. Silymarin and herbal extract reversed the impaired hepatic total antioxidant status ( p < 0.05). Herbal extract partially reduced the elevated hepatic lipid peroxides. Hepatic transforming growth factor-β1 (TGF-β1) level decreased significantly ( p < 0.05) in the LE group. Therefore, high-dose herbal extract improved hepatic antioxidant capacity through enhancing catalase activity and glutathione redox status, whereas low-dose herbal extract inhibited liver fibrosis through decreasing hepatic TGF-β1 level in rats with CCl 4-induced liver injury.

2021 ◽  
Author(s):  
Yu Xiong ◽  
Jinyuan Hu ◽  
Chen Xuan ◽  
Jiayu Tian ◽  
Kaiyue Tan ◽  
...  

Abstract BackgroundLiver fibrosis develops from various chronic liver diseases, and there is currently a lack of specific treatment strategies. Yiqi Rougan decoction (YQRG) is a traditional Chinese medicine that has shown durative effects in the treatment of liver fibrosis; however, the mechanism associated with YQRG-related improvements in liver fibrosis remains to be experimentally determined. This study evaluated the therapeutic effect of YQRG on carbon tetrachloride (CCl4)-induced liver fibrosis in rats and its molecular mechanism. MethodsWe used low-, medium-, and high-dose YQRG to treat CCl4-induced liver fibrosis in rats, followed by assessment of liver injury and fibrosis according to liver appearance, body weight, liver mass index, histopathologic examination, and serum testing. Additionally, we performed transcriptome analysis using RNA-sequencing (RNA-seq) technology, including cluster, Gene Ontology (GO), and pathway analyses, to identify differentially expressed genes (DEGs), and protein and gene expression were detected by immunofluorescence (IFC), western blot, and real-time quantitative PCR. ResultsThe results showed that YQRG effectively alleviated CCl4-induced liver injury and fibrosis in rats, including observations of improved liver function, decreased activity of hepatic stellate cells (HSCs), and decreased extracellular matrix (ECM) deposition. Moreover, we identified downregulated and upregulated DEGs in the model group relative to the control and YQRG-treated groups, with GO analysis revealing their enrichment in biological processes, such as endoplasmic reticulum stress (ERS), apoptosis, and autophagy. Furthermore, pathway analysis showed that YQRG treatment downregulated the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/AKT) signalling pathways and upregulated other signalling pathways, including those related to peroxisome proliferator-activated receptors(PPAR) and AMP-activated protein kinase(AMPK), with these finding subsequently verified experimentally. ConclusionThese findings showed that YQRG improved CCl4-induced liver fibrosis through multiple mechanisms and pathways, offering critical insight into the YQRG-related therapeutic mechanism and promoting further research into its potential application.


2020 ◽  
Vol 21 (11) ◽  
pp. 4017
Author(s):  
Patric Schyman ◽  
Richard L. Printz ◽  
Shanea K. Estes ◽  
Tracy P. O’Brien ◽  
Masakazu Shiota ◽  
...  

The immense resources required and the ethical concerns for animal-based toxicological studies have driven the development of in vitro and in silico approaches. Recently, we validated our approach in which the expression of a set of genes is uniquely associated with an organ-injury phenotype (injury module), by using thioacetamide, a known liver toxicant. Here, we sought to explore whether RNA-seq data obtained from human cells (in vitro) treated with thioacetamide-S-oxide (a toxic intermediate metabolite) would correlate across species with the injury responses found in rat cells (in vitro) after exposure to this metabolite as well as in rats exposed to thioacetamide (in vivo). We treated two human cell types with thioacetamide-S-oxide (primary hepatocytes with 0 (vehicle), 0.125 (low dose), or 0.25 (high dose) mM, and renal tubular epithelial cells with 0 (vehicle), 0.25 (low dose), or 1.00 (high dose) mM) and collected RNA-seq data 9 or 24 h after treatment. We found that the liver-injury modules significantly altered in human hepatocytes 24 h after high-dose treatment involved cellular infiltration and bile duct proliferation, which are linked to fibrosis. For high-dose treatments, our modular approach predicted the rat in vivo and in vitro results from human in vitro RNA-seq data with Pearson correlation coefficients of 0.60 and 0.63, respectively, which was not observed for individual genes or KEGG pathways.


2019 ◽  
Vol 20 (10) ◽  
pp. 2592 ◽  
Author(s):  
Wei-Hsiang Hsu ◽  
Se-Chun Liao ◽  
Yau-Jan Chyan ◽  
Kai-Wen Huang ◽  
Shih-Lan Hsu ◽  
...  

Background and Aims: Liver fibrosis is the excessive accumulation of extracellular matrix proteins, including collagen, which occurs in most types of chronic liver diseases. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension. Activated hepatic perivascular stellate cells, portal fibroblasts, and myofibroblasts of bone marrow origin have been identified as major collagen-producing cells in the injured liver. These cells are activated by fibrogenic cytokines, such as TGF-β1. The inhibition of TGF-β1 function or synthesis is a major target for the development of antifibrotic therapies. Our previous study showed that the water and ethanol extracts of Graptopetalum paraguayense (GP), a Chinese herbal medicine, can prevent dimethylnitrosamine (DMN)-induced hepatic inflammation and fibrosis in rats. Methods: We used rat hepatic stellate HSC-T6 cells and a diethylnitrosamine (DEN)-induced rat liver injury model to test the potential mechanism of GP extracts and its fraction, HH-F3. Results: We demonstrated that GP extracts and HH-F3 downregulated the expression levels of extracellular matrix (ECM) proteins and inhibited the proliferation and migration via suppression of the TGF-β1 pathway in rat hepatic stellate HSC-T6 cells. Moreover, the HH-F3 fraction decreased hepatic collagen content and reduced plasma AST, ALT, and γ-GT activities in a DEN-induced rat liver injury model, suggesting that GP/HH-F3 has hepatoprotective effects against DEN-induced liver fibrosis. Conclusion: These findings indicate that GP/HH-F3 may be a potential therapeutic agent for the treatment of liver fibrosis. The inhibition of TGF-β-mediated fibrogenesis may be a central mechanism by which GP/HH-F3 protects the liver from injury.


2011 ◽  
Vol 39 (03) ◽  
pp. 537-550 ◽  
Author(s):  
Xiao-Peng Tian ◽  
Yan-Yan Yin ◽  
Xia Li

Acremoniumterricola milleretal mycelium (AMM) is one of the most precious traditional Chinese medicines. It has numerous protective effects on organs, and has been used in Chinese herb prescription to treat refractory diseases. Our preliminary studies demonstrated that AMM had hepatoprotective activity in acute liver injury. We further investigated the effects of AMM on liver fibrosis in rats induced by carbon tetrachloride ( CCl 4) and explore its possible mechanisms. The animal model was established by injection with 50% CCl 4 subcutaneously in male Sprague-Dawley rats twice a week for eight weeks. Meanwhile, AMM (175, 350 and 700 mg/kg) was administered intragastrically per day until sacrifice. We found that treatment with AMM (175, 350 and 700 mg/kg) decreased CCl 4-induced elevation of serum transaminase activities, hyaluronic acid, laminin and procollagen type III levels, and contents of hydroxyproline in liver tissues. It also restored the decreased SOD and GSH-Px activities and inhibited the formation of lipid peroxidative products during CCl 4 treatment. Moreover, AMM (350 and 700 mg/kg) decreased the elevation of TGF-β1 by 19.6% and 34.3%, respectively. In the pathological study, liver injury and the formation of liver fibrosis in rates treated by AMM were improved significantly. Immunoblot analysis showed that AMM (175, 350 and 700 mg/kg) inhibited Smad 2/3 phosphorylation, and elevated inhibitor Smad 7 expression. These results suggested that AMM could protect liver damage and inhibit the progression of hepatic fibrosis induced by CCl 4, and its mechanisms might be associated with its ability to scavenge free radicals, decrease the level of TGF-β1 and block TGF-β/Smad signaling pathway.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jimi Huh ◽  
Su Jung Ham ◽  
Young Chul Cho ◽  
Bumwoo Park ◽  
Bohyun Kim ◽  
...  

Abstract Background To facilitate translational drug development for liver fibrosis, preclinical trials need to be run in parallel with clinical research. Liver function estimation by gadoxetate-enhanced dynamic contrast-enhanced MRI (DCE-MRI) is being established in clinical research, but still rarely used in preclinical trials. We aimed to evaluate feasibility of DCE-MRI indices as translatable biomarkers in a liver fibrosis animal model. Methods Liver fibrosis was induced in Sprague-Dawley rats by thioacetamide (200 mg, 150 mg, and saline for the high-dose, low-dose, and control groups, respectively). Subsequently, DCE-MRI was performed to measure: relative liver enhancement at 3-min (RLE-3), RLE-15, initial area-under-the-curve until 3-min (iAUC-3), iAUC-15, and maximum-enhancement (Emax). The correlation coefficients between these MRI indices and the histologic collagen area, indocyanine green retention at 15-min (ICG-R15), and shear wave elastography (SWE) were calculated. Diagnostic performance to diagnose liver fibrosis was also evaluated by receiver-operating-characteristic (ROC) analysis. Results Animal model was successful in that the collagen area of the liver was the largest in the high-dose group, followed by the low-dose group and control group. The correlation between the DCE-MRI indices and collagen area was high for iAUC-15, Emax, iAUC-3, and RLE-3 but moderate for RLE-15 (r, − 0.81, − 0.81, − 0.78, − 0.80, and − 0.51, respectively). The DCE-MRI indices showed moderate correlation with ICG-R15: the highest for iAUC-15, followed by iAUC-3, RLE-3, Emax, and RLE-15 (r, − 0.65, − 0.63, − 0.62, − 0.58, and − 0.56, respectively). The correlation coefficients between DCE-MRI indices and SWE ranged from − 0.59 to − 0.28. The diagnostic accuracy of RLE-3, iAUC-3, iAUC-15, and Emax was 100% (AUROC 1.000), whereas those of RLE-15 and SWE were relatively low (AUROC 0.777, 0.848, respectively). Conclusion Among the gadoxetate-enhanced DCE-MRI indices, iAUC-15 and iAUC-3 might be bidirectional translatable biomarkers between preclinical and clinical research for evaluating histopathologic liver fibrosis and physiologic liver functions in a non-invasive manner.


2011 ◽  
Vol 39 (06) ◽  
pp. 1173-1191 ◽  
Author(s):  
Po-Shan Wu ◽  
Shu-Ju Wu ◽  
Ya-Hui Tsai ◽  
Yun-Ho Lin ◽  
Jane C.-J. Chao

Polysaccharide-rich Lycium barbarum and Rehmannia glutinosa have been considered to have immune-modulating activity. This study investigated the effects of water extracted Lycium barbarum and Rehmannia glutinosa (HE) on carbon tetrachloride ( CCl4 )-induced liver injury in rats. Male Sprague-Dawley rats were randomly divided into: normal diet + peritoneal injection of olive oil (control), normal diet + CCl4 injection ( CCl4 ), 1 × HE (0.05% HE for each) + CCl4 (1 × HE), and 3 × HE (0.15% HE for each) + CCl4 (3 × HE) groups. Rats were injected with 40% CCl4 at a dose of 0.75 ml/kg body weight once a week for seven weeks, one week after herbal extract treatment. After eight week herbal extract treatment, pathohistological examination showed that both 1× and 3 × HE treatments diminished necrotic hepatocytes, chemoattraction of inflammatory cells, and liver fibrosis. Both 1× and 3 × HE treatments decreased plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, and reduced hepatic levels of pro-inflammatory cytokines — tumor necrosis factor-α and interleukin-1β — compared to CCl4 treatment alone. The 1 × HE treatment increased hepatic anti-inflammatory cytokine IL-10 levels. Both the 1× and 3 × HE treatments suppressed liver fibrosis biomarkers — transforming growth factor-β1 and hydroxyproline. Therefore, treatment with water extracted Lycium barbarum and Rehmannia glutinosa (0.05% and 0.15% for each) for eight weeks protects against necrotic damage, indicated by decreases in plasma ALT and AST activities, and suppresses liver fibrosis by down-regulation of liver inflammation in rats with CCl4-induced liver injury.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. e14652-e14652
Author(s):  
Michael Molyneaux ◽  
John Xu ◽  
David M. Evans ◽  
Patrick Lu

e14652 Background: Cholangiocarcinoma (CCA) is a hepatobiliary cancer and although there have been advances recently there is a need for additional treatment methods for patients. Over expressions of TGF-β1 and COX-2 have been reported to play key roles in tumorigenesis of CCA. We studied the effect of STP705 on the growth of HuCCT-1 xenograft tumors in nude mice. STP705 is a TGF-β1/COX-2 specific siRNA combination product formulated in Histidine-Lysine co-Polymer nanoparticle delivery system. Methods: HuCCT-1 xenograft tumors were implanted subcutaneously into 24 BALB/c nude female mice (n = 8/group). Group 1 received vehicle control, group 2 (low-dose) received 8µg of STP705, and group 3 (high-dose) received 16µg of STP705. Intratumoral test article administration and tumor volume measurements were conducted twice a week for 3-weeks. Qualitative analysis was performed on H&E, Picrosirius red (PSR) and immunohistochemistry (IHC) stained sections of tumor tissues. Results: High- and low- dose groups of STP705 reported significantly lower mean tumor volume at day 21 (p = 0.005 & p = 0.036, respectively) as compared to control group. High-dose group reported significantly lower tumor volume at days 11 (p = 0.042), 15 (p = 0.003), and 18 (p = 0.007) as compared to the control group. IHC assessment demonstrated that STP705-treated animals had significantly lower (H-score ± SEM) TGF-β1, COX-2, HSP70, Bcl-xL and MMP-9 staining (52±9, 39±4, 178±8, 25±7 & 7±1, respectively) as compared to control animals (94±11, 66±8, 213±7, 59±8 & 11±2, respectively – with p < 0.05). Assessment of Caspase-3 and H&E (necrosis and inflammation) slides reported higher mean score for STP705-treated animals, while PSR staining reported lower fibroplasia for STP705-treated animals as compared to the control animals. Conclusions: The data suggests that STP705-treatment suppresses TGF-β1 and COX-2 expression resulting in inhibition of (i) tumor cell survival, (ii) fibrosis, (iii) promotes apoptosis, and (iv)decreased invasiveness of tumor cells. Overall, STP705 is an innovative siRNA-based treatment that results in significant suppression of tumor growth in a HuCCT-1 xenograft mouse tumor model.


Sign in / Sign up

Export Citation Format

Share Document