STRAIN RATE DEPENDENCE ON THE HIGH TEMPERATURE MECHANICAL BEHAVIOR OF THE NI-18SI-3.0NB-1.0CR-0.2B INTERMETALLIC ALLOY

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1040-1046 ◽  
Author(s):  
CHIH-CHIANG FU ◽  
JASON SHIAN-CHING JANG ◽  
I-SUI LEE ◽  
HUEI-SEN WANG

The effect of strain rate and temperature on the mechanical behavior of the Ni -18 Si -3.0 Nb -1.0 Cr -0.2 B alloy was investigated by atmosphere-controlled tensile testing in vacuum and air atmosphere at different strain rates and different temperatures. The results reveal that the Ni -18 Si -3.0 Nb -1.0 Cr -0.2 B alloy exhibits ductile mechanical behavior (UTS > 1200 MPa, ε > 8%) at room temperature under different atmosphere conditions. In addition, both of the ultimate tensile strength and elongation exhibit quite insensitive response with respect to the loading strain rate when tests are held at temperatures below 973K. The elongation of the samples tested in vacuum and air for the Ni -18 Si -3 Nb -1 Cr -0.2 B alloy exhibits a significantly increase with temperature from 973K to 1073K. In addition, all fracture surfaces tested at 1073K in vacuum and air atmosphere presents a typical ductile fracture surface, a fully dimpled fracture pattern. The fact of increasing in elongation at high temperature (1073K) is suggested to be attributed by the dynamic recrystallization that occurs preferentially around the dispersion phase or grain boundaries and so as to enhance the ductility by reducing the stress concentration at or near grain boundaries.

2011 ◽  
Vol 228-229 ◽  
pp. 303-308
Author(s):  
Bin Jia ◽  
Zheng Liang Li ◽  
Jun Lin Tao ◽  
Chun Tao Zhang

SPHB tests of concrete under different temperatures and various loading conditions are completed, and high-temperature dynamical behavior of concrete is obtained. Dynamical mechanical behavior of concrete with high temperature is affected by not only the strain rate effect, but also the high temperature weakening effect, and the strain rate hardening effect is coupled with high temperature weakening effect, but the latter has greater influence. Concrete failure evolution is described on basis of the damage factor, the intercoupling strain rate hardening effect and temperature weakening effect are simply set as mutually independent factors, each parameter is respectively fitted with test data, finally, concrete constitutive equation under high-temperature dynamical conditions is established, and comparative analysis with test data are conducted, indicating good coincidence with test results.


2000 ◽  
Vol 646 ◽  
Author(s):  
I. Baker ◽  
D. Wu ◽  
E. P. George

ABSTRACTThe effects of the environment on the room temperature mechanical behavior of Fe-43Al single crystals have been studied. In both single slip and duplex slip crystals, fracture strains greater than 40% were obtained in specimens tested in oxygen, whereas elongations of ∼10% and ∼20% were obtained in air and vacuum, respectively. By comparison, similar elongations were obtained in boron-doped single-slip-oriented single crystals in both air and vacuum, but more ductility was obtained in air at slow strain rate. Fractography showed that testing in different environments produced marked differences in the fracture surfaces. Alternate loading of tensile specimens in air and under vacuum was performed at slow strain rates and showed changes in the flow stress between the two environments. The results are discussed in terms of the effects of moisture-produced hydrogen on the flow and fracture of FeAl.


2008 ◽  
Vol 23 (11) ◽  
pp. 3066-3074 ◽  
Author(s):  
Lv Xiao ◽  
Weijie Lu ◽  
Jining Qin ◽  
Di Zhang ◽  
Minmin Wang ◽  
...  

High-temperature titanium matrix composites reinforced with hybrid reinforcements are synthesized by common casting and hot working technologies. Tensile properties are tested at different temperatures and strain rates. Ultimate strengths of the composites are significantly enhanced under all conditions and decrease when the strain rate is lower. Equicohesive temperature of the matrix is around 873 K at the strain rate 10−3s−1 and well below 873 K at 10−5s−1. At higher temperature or lower strain rate, interfacial debonding is more drastic and reduces the strengths of composites. The materials are embrittled under creep-rupture conditions. Strict reinforcement morphology is required for more complex service conditions at high temperatures in metal matrix composites.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744014
Author(s):  
M. Li ◽  
Q. W. Jiang

Tensile deformation behavior of ultrafine-grained (UFG) copper processed by accumulative roll-bonding (ARB) was studied under different strain rates at room temperature. It was found that the UFG copper under the strain rate of 10[Formula: see text] s[Formula: see text] led to a higher strength (higher flow stress level), flow stability (higher stress hardening rate) and fracture elongation. In the fracture surface of the sample appeared a large number of cleavage steps under the strain rate of 10[Formula: see text] s[Formula: see text], indicating a typical brittle fracture mode. When the strain rate is 10[Formula: see text] or 10[Formula: see text] s[Formula: see text], a great amount of dimples with few cleavage steps were observed, showing a transition from brittle to plastic deformation with increasing strain rate.


2014 ◽  
Vol 1039 ◽  
pp. 107-111
Author(s):  
Yang Chen ◽  
Gui Qin Li ◽  
Bin Ruan ◽  
Xiao Yuan ◽  
Hong Bo Li

The mechanical behavior of plastic material is dramatically sensitive to temperature. An method is proposed to predict the mechanical behavior of plastics for cars, ranging from low-temperature low temperature ≤-40°C to high temperature ≥80°C. It dominates the behavior of plastic material based on improved constitutive model in which the parameters adjusted by a series of tests under different temperatures. The method is validated with test and establishes the basis for research and development of plastic parts for automobile as well.


2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1818
Author(s):  
Andrea Mura ◽  
Alessando Ricci ◽  
Giancarlo Canavese

Plastics are widely used in structural components where cyclic loads may cause fatigue failure. In particular, in some applications such as in vehicles, the working temperature may change and therefore the strength of the polymeric materials. In this work, the fatigue behavior of two thermoplastic materials (ABS and PC-ABS) at different temperatures has been investigated. In particular, three temperatures have been considered representing the working condition at room temperature, at low temperature (winter conditions), and high temperature (summer conditions and/or components close to the engine). Results show that high temperature have big impact on fatigue performance, while low temperatures may also have a slight positive effect.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2020 ◽  
Author(s):  
Chuang Liu ◽  
Dongzhi Sun ◽  
Xianfeng Zhang ◽  
Florence Andrieux ◽  
Tobias Gerster

Abstract Cast iron alloys with low production cost and quite good mechanical properties are widely used in the automotive industry. To study the mechanical behavior of a typical ductile cast iron (GJS-450) with nodular graphite, uni-axial quasi-static and dynamic tensile tests at strain rates of 10− 4, 1, 10, 100, and 250 s− 1 were carried out. In order to investigate the effects of stress state, specimens with various geometries were used in the experiments. Stress–strain curves and fracture strains of the GJS-450 alloy in the strain-rate range of 10− 4 to 250 s− 1 were obtained. A strain rate-dependent plastic flow law based on the Voce model is proposed to describe the mechanical behavior in the corresponding strain-rate range. The deformation behavior at various strain rates is observed and analyzed through simulations with the proposed strain rate-dependent constitutive model. The available damage model from Bai and Wierzbicki is extended to take the strain rate into account and calibrated based on the analysis of local fracture strains. The validity of the proposed constitutive model including the damage model was verified by the corresponding experimental results. The results show that the strain rate has obviously nonlinear effects on the yield stress and fracture strain of GJS-450 alloys. The predictions with the proposed constitutive model and damage models at various strain rates agree well with the experimental results, which illustrates that the rate-dependent flow rule and damage models can be used to describe the mechanical behavior of cast iron alloys at elevated strain rates.


2011 ◽  
Vol 462-463 ◽  
pp. 1-6 ◽  
Author(s):  
Tao Suo ◽  
Yu Long Li ◽  
Ming Shuang Liu

As Carbon-fiber-reinforced SiC-matrix (C/SiC) composites are widely used in high-temperature structural applications, its mechanical behavior at high temperature is important for the reliability of structures. In this paper, mechanical behavior of a kind of 2D C/SiC composite was investigated at temperatures ranging from room temperature (20C) to 600C under quasi-static and dynamic uniaxial compression. The results show the composite has excellent high temperature mechanical properties at the tested temperature range. Catastrophic brittle failure is not observed for the specimens tested at different strain rates. The compressive strength of the composite deceases only 10% at 600C if compared with that at room temperature. It is proposed that the decrease of compressive strength of the 2D C/SiC composite at high temperature is influenced mainly by release of thermal residual stresses in the reinforced carbon fiber and silicon carbon matrix and oxidation of the composite in high temperature atmosphere.


Sign in / Sign up

Export Citation Format

Share Document