Melting properties of Pt and its transport coefficients in liquid states under high pressures

2016 ◽  
Vol 30 (01) ◽  
pp. 1550250 ◽  
Author(s):  
Pan-Pan Wang ◽  
Ju-Xiang Shao ◽  
Qi-Long Cao

Molecular dynamics (MD) simulations of the melting and transport properties in liquid states of platinum for the pressure range (50–200 GPa) are reported. The melting curve of platinum is consistent with previous ab initio MD simulation results and the first-principles melting curve. Calculated results for the pressure dependence of fusion entropy and fusion volume show that the fusion entropy and the fusion volume decrease with increasing pressure, and the ratio of the fusion volume to fusion entropy roughly reproduces the melting slope, which has a moderate decrease along the melting line. The Arrhenius law well describes the temperature dependence of self-diffusion coefficients and viscosity under high pressure, and the diffusion activation energy decreases with increasing pressure, while the viscosity activation energy increases with increasing pressure. In addition, the entropy-scaling law, proposed by Rosenfeld under ambient pressure, still holds well for liquid Pt under high pressure conditions.

2016 ◽  
Vol 113 (40) ◽  
pp. 11110-11115 ◽  
Author(s):  
Xue Yong ◽  
Hanyu Liu ◽  
Min Wu ◽  
Yansun Yao ◽  
John S. Tse ◽  
...  

Structural polymorphism in dense carbon dioxide (CO2) has attracted significant attention in high-pressure physics and chemistry for the past two decades. Here, we have performed high-pressure experiments and first-principles theoretical calculations to investigate the stability, structure, and dynamical properties of dense CO2. We found evidence that CO2-V with the 4-coordinated extended structure can be quenched to ambient pressure below 200 K—the melting temperature of CO2-I. CO2-V is a fully coordinated structure formed from a molecular solid at high pressure and recovered at ambient pressure. Apart from confirming the metastability of CO2-V (I-42d) at ambient pressure at low temperature, results of ab initio molecular dynamics and metadynamics (MD) simulations provided insights into the transformation processes and structural relationship from the molecular to the extended phases. In addition, the simulation also predicted a phase V′(Pna21) in the stability region of CO2-V with a diffraction pattern similar to that previously assigned to the CO2-V (P212121) structure. Both CO2-V and -V′ are predicted to be recoverable and hard with a Vicker hardness of ∼20 GPa. Significantly, MD simulations found that the CO2 in phase IV exhibits large-amplitude bending motions at finite temperatures and high pressures. This finding helps to explain the discrepancy between earlier predicted static structures and experiments. MD simulations clearly indicate temperature effects are critical to understanding the high-pressure behaviors of dense CO2 structures—highlighting the significance of chemical kinetics associated with the transformations.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2099
Author(s):  
Teng-Hui Wang ◽  
Wei-Xiang Wang ◽  
Hai-Chou Chang

The nanostructures of ionic liquids (ILs) have been the focus of considerable research attention in recent years. Nevertheless, the nanoscale structures of ILs in the presence of polymers have not been described in detail at present. In this study, nanostructures of ILs disturbed by poly(vinylidene fluoride) (PVdF) were investigated via high-pressure infrared spectra. For 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([HEMIm][TFSI])-PVdF mixtures, non-monotonic frequency shifts of the C4,5-H vibrations upon dilution were observed under ambient pressure. The experimental results suggest the presence of microheterogeneity in the [HEMIm][TFSI] systems. Upon compression, PVdF further influenced the local structure of C4,5–H via pressure-enhanced IL–PVdF interactions; however, the local structures of C2–H and hydrogen-bonded O–H were not affected by PVdF under high pressures. For choline [TFSI]–PVdF mixtures, PVdF may disturb the local structures of hydrogen-bonded O–H. In the absence of the C4,5–H⋯anion and C2–H⋯anion in choline [TFSI]–PVdF mixtures, the O–H group becomes a favorable moiety for pressure-enhanced IL–PVdF interactions. Our results indicate the potential of high-pressure application for designing pressure-dependent electronic switches based on the possible changes in the microheterogeneity and electrical conductivity in IL-PVdF systems under various pressures.


2009 ◽  
Vol 23 (05) ◽  
pp. 723-741 ◽  
Author(s):  
K. IYAKUTTI ◽  
C. NIRMALA LOUIS ◽  
S. ANURATHA ◽  
S. MAHALAKSHMI

The electronic band structure, density of states, structural phase transition, superconducting transition and Fermi surface cross section of titanium ( Ti ) under normal and high pressures are reported. The high pressure band structure exhibits significant deviations from the normal pressure band structure due to s → d transition. On the basis of band structure and total energy results obtained using tight-binding linear muffin-tin orbital method (TB LMTO), we predict a phase transformation sequence of α( hcp ) → ω (hexagonal) → γ (distorted hcp) → β (bcc) in titanium under pressure. From our analysis, we predict a δ (distorted bcc) phase which is not stable at any high pressures. At ambient pressure, the superconducting transition occurs at 0.354 K. When the pressure is increased, it is predicted that, Tc increases at a rate of 3.123 K/Mbar in hcp–Ti . On further increase of pressure, Tc begins to decrease at a rate of 1.464 K/Mbar. The highest value of Tc(P) estimated is 5.043 K for hcp–Ti , 4.538 K for ω– Ti and 4.85 K for bcc – Ti . From this, it is inferred that the maximum value of Tc(P) is rather insensitive to the crystal structure of Ti . The nonlinearities in Tc(P) is explained by considering the destruction and creation of new parts of Fermi surface at high pressure. At normal pressure, the hardness of Ti is in the following order: ω- Ti > hcp - Ti > bcc- Ti > γ- Ti .


2012 ◽  
Vol 26 (07) ◽  
pp. 1250050 ◽  
Author(s):  
VU VAN HUNG ◽  
LE DAI THANH

The high-pressure melting curve of semiconductors with defects has been studied using statistical moment method (SMM). In agreement with experiments and with DFT calculations we obtain a negative slope for the high-pressure melting curve. We have derived a new equation for the melting curve of the defect semiconductors. The melting was investigated at different high pressures, and the SMM calculated melting temperature of Si, AlP, AlAs and GaP crystals with defects being in good agreement with previous experiments.


2014 ◽  
Vol 70 (a1) ◽  
pp. C894-C894
Author(s):  
Masakazu Matsumoto ◽  
Kazuhiro Himoto ◽  
Kenji Mochizuki ◽  
Hideki Tanaka

Water distributes ubiquitously among the solar system and outer space in a wide variety of solid forms, i.e. more than ten kinds of crystalline ice, two types of amorphous ice, and clathrate hydrates. These polymorphs often play crucial roles in the planetary geology. Diversity of the stable ices and hydrates also suggests the existence of the various kinds of stable and metastable phases yet to be discovered [1]. Computer simulations and the theoretical treatments are useful to explore them. In this talk, we introduce the phase transitions of ice VII, which is one of the highest-pressure ice phases. The melting curve of ice VII to high-pressure liquid water has not been settled by experiments. We have proposed the intervention of a plastic phase of ice (plastic ice) between ice VII and liquid water, based on molecular dynamics (MD) simulations and the free energy calculations [2], which enables to account for large gaps among the various experimental curves of ice VII. In plastic ice, the water molecules are fixed at the lattice points, while they rotate freely. Interestingly, our additional survey by large-scale MD simulations elucidates that the phase transition between ice VII and plastic ice is first-order at low pressure as it was already predicted, while it is found to be second-order at higher pressures, where a tricritical point joins these phase boundaries together [3]. The critical fluctuations may give a clue for determining the phase boundary experimentally. We also argue about the phase transition dynamics of liquid water to ice VII at their direct phase boundary where metastable plastic ice phase plays an important role.


2013 ◽  
Vol 22 ◽  
pp. 612-618 ◽  
Author(s):  
DINESH C. GUPTA ◽  
IDRIS HAMID

ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.


2000 ◽  
Vol 56 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Stefan Carlson ◽  
Ann-Kristin Larsson ◽  
Franziska E. Rohrer

The ReO3-type structure NbO2F, niobium dioxyfluoride, has been studied at high pressures using diamond anvil cells and synchrotron X-ray radiation. High-pressure powder diffraction measurements have been performed up to 40.1 GPa. A phase transition from the cubic (Pm3¯m) ambient pressure structure to a rhombohedral (R3¯c) structure at 0.47 GPa has been observed. Rietveld refinements at 1.38, 1.96, 3.20, 6.23, 9.00 and 10.5 GPa showed that the transition involves an a − a − a − tilting of the cation–anion coordination octahedra and a change of the anion–anion arrangement to approach hexagonal close packing. Compression and distortion of the Nb(O/F)6 octahedra is also revealed by the Rietveld refinements. At 17–18 GPa, the diffraction pattern disappears and the structure becomes X-ray amorphous.


2001 ◽  
Vol 56 (9-10) ◽  
pp. 626-634 ◽  
Author(s):  
Albert Würflinger ◽  
Denise Mondieig ◽  
Fazil Rajabalee ◽  
Miquel Angel Cuevas-Diarte

Abstract The phase diagram of the binary system nC16H34 -nC17H36 has been established at ambient pressure using DSC and crystallographic measurements. At low temperatures below the rotator phase RI there exist two crystal forms Op (about x(C17) = 0.25) and Mdci (about x(C17) = 0.67) which are different from the crystal structures of the pure compounds (Tp for C16 and Oi for C17). Furthermore two compositions: (a) C16/C17 = 3:1 and (b) = 1:2, which correspond to the coexistence range of Op and Mdci, were chosen for high pressure DTA and pVT measurements, yielding the following findings: The specific volume of the rotator phase of C17 is distinctly lower than those of the binary systems at the same state point. Assuming the existence of a metastable rotator phase for C16, an excess volume of Δ VE/V ≈ 0.01 can be estimated. Due to the very enlarged coexistence range of RI, the mixtures reach their lower transition point at considerably lower temperatures (in isobaric measurements) or higher pressures (in isothermal measurements), where the specific volume is lower than that of C17 at its transition point. Furthermore, the volume and enthalpy changes of the Φord -RI transition is distinctly smaller for the binary systems than for pure C17. Thus the specific volumes of the phases Op and Mdci are appreciably larger than ν(spec.) of C17. Op and Mdci have practically the same specific volume in accordance with the crystallographic results. Enthalpy values are obtained with the aid of the Clausius-Clapeyron equation which agree well with enthalpies derived from the DSC measurements. Furthermore, pVT data have been established for the liquid and solid phases of nC18H38 in the neighbourhood of the melting curve, allowing to determine volume and enthalpy changes of melting as a function of pressure.


2013 ◽  
Vol 813 ◽  
pp. 327-331
Author(s):  
Wei Min Peng ◽  
Zhong Li Liu ◽  
Hong Zhi Fu

The electronic and the superconducting properties of Pd were studied in the framework of density functional perturbation theory. We explored the superconducting transition temperature for bulk Pd and predicted possible superconductivity at ambient and high pressures. It is found that of Pd is 0.0356 K at ambient pressure and it decreases with pressure.


1981 ◽  
Vol 36 (12) ◽  
pp. 1371-1377 ◽  
Author(s):  
M. Buback ◽  
H. Lendle

AbstractThe decomposition of tert. butylperoxypivalate dissolved in n-heptane has been measured ir-spectroscopically in optical high-pressure cells up to 2000 bar at temperatures between 65 °C and 105 °C. The reaction follows a first order rate law with an activation energy Ea = 122.3 ±3.0 kJ · mol-1 and an activation volume ⊿V≠ = 1.6 ± 1.0 cm3 mol-1 .


Sign in / Sign up

Export Citation Format

Share Document