Optical interpretation for plasmonic adjustment of nanostructured Ag-NiO thin films

2021 ◽  
Vol 35 (06) ◽  
pp. 2150093
Author(s):  
A. Stamatelatos ◽  
M. Tsarmpopoulou ◽  
A. G. Chronis ◽  
N. Kanistras ◽  
D. I. Anyfantis ◽  
...  

Ultrathin Ag and Ni/NiO films are sequentially produced on Corning glass and silicon substrates by means of magnetron sputtering. Post annealing treatment in a furnace with air at [Formula: see text]C and [Formula: see text]C may lead to the formation of Ag nanostructures in NiO environment. Some of these samples present local surface plasmon resonances (SPRs). The sequence in which each layer is deposited, as well as, the state of the structure on which the layer is deposited, appears to play a pivotal role in the optical properties of these nanostructures, which are attributed to the growth properties of the nanocomposite thin films. Ultimately, rigorous theoretical calculations have been made for comparison and discussion with the experimental results.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 893
Author(s):  
Dimitrios Ntemogiannis ◽  
Maria Tsarmpopoulou ◽  
Alexandros G. Chronis ◽  
Dimitrios I. Anyfantis ◽  
Alexandros Barnasas ◽  
...  

Ag/Pd multilayers and AgPd alloyed ultrathin films were deposited on Corning glass by magnetron sputtering. After being annealed in a furnace in air at 460 °C, self-assembled nanoparticles were formed. Localized surface plasmon resonances were observed only for the Ag-rich samples in the full range of the visible light spectrum. The resonance position was found to depend on the initial film thickness. In order to gain further physical insight, rigorous theoretical calculations were carried out via the rigid coupled-wave analysis method for the entire compositional range between Ag and Pd. Theoretical calculations were proven to be in suitable agreement with the experimental results.


2016 ◽  
Author(s):  
V. Shankernath ◽  
K. Lakshun Naidu ◽  
M. Ghanashyam Krishna ◽  
K. A. Padmanabhan

2009 ◽  
Vol 79-82 ◽  
pp. 747-750 ◽  
Author(s):  
Dong Qing Liu ◽  
Wen Wei Zheng ◽  
Hai Feng Cheng ◽  
Hai Tao Liu

Thermochromic vanadium dioxide (VO2) exhibits a semi-conducting to metallic phase transition at about 68°C, involving strong variations in electrical and optical properties. A simple method was proposed to prepare VO2 thin films from easily gained V2O5 thin films. The detailed thermodynamic calculation was done and the results show that V2O5 will decompose to VO2 when the post annealing temperature reaches 550°C at the atmospheric pressure of less than 0.06Pa. The initial V2O5 films were prepared by sol-gel method on fused-quartz substrates. Different post annealing conditions were studied. The derived VO2 thin film samples were characterized using X-ray diffraction and X-ray photoelectron spectroscopy. The electrical resistance and infrared emissivity of VO2 thin films under different temperatures were measured. The results show that the VO2 thin film derived from the V2O5 thin film annealed at 550°C for 10 hours is pure dioxide of vanadium without other valences. It was observed that the resistance of VO2 thin film with thickness about 600nm can change by 4 orders of magnitude and the 7.5-14μm emissivity can change by 0.6 during the phase transition.


2020 ◽  
Vol 2 (9) ◽  
pp. 4172-4178
Author(s):  
Matias Kalaswad ◽  
Bruce Zhang ◽  
Xuejing Wang ◽  
Han Wang ◽  
Xingyao Gao ◽  
...  

Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories.


2008 ◽  
Vol 47-50 ◽  
pp. 558-561
Author(s):  
Ren Guo Song ◽  
Fang Er Yang ◽  
Xiao Hong Weng ◽  
Wang Zhao He

We have developed a new method to fabricate poly(diphenylsilylenemethylene) (PDPhSM) matrix nanocomposite thin films containing copper nanoparticles produced by laser ablation in this paper. First of all, 1,1,3,3-tetra- phenyl-1,3-disilacyclobutane (TPDC) films were deposited on 4 cm2 silicon substrates cut from c-Si wafers by conventional vacuum evaporation under a pressure of 3.0×10-5 Torr; then copper nanoparticles were deposited onto the TPDC films by laser ablation; finally the TPDC films with copper nanoparticles were heated in an electric furnace in an air atmosphere at 553 K for 10 min to induce ring-opening polymerization of TPDC. The results indicated that it is possible to fabricate PDPhSM matrix nanocomposite thin films using copper nanoparticles produced by laser ablation. The morphology and size distribution of copper nanoparticles can be controlled by laser ablation conditions. Also, the polymerization efficiency depends on the size and chemical state of copper nanoparticles.


2001 ◽  
Vol 17 (1-2) ◽  
pp. 327-330 ◽  
Author(s):  
Sang Hyuck Bae ◽  
Sang Yeol Lee ◽  
Hyun Young Kim ◽  
Seongil Im

Vacuum ◽  
1997 ◽  
Vol 48 (6) ◽  
pp. 509-514 ◽  
Author(s):  
E Gourmelon ◽  
H Hadouda ◽  
JC Bernede ◽  
J Pouzet

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edson P. Bellido ◽  
Isobel C. Bicket ◽  
Gianluigi A. Botton

Abstract In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.


Sign in / Sign up

Export Citation Format

Share Document