A CONDUCTION MODEL OF THE ELECTRORHEOLOGICAL EFFECT

1994 ◽  
Vol 08 (20n21) ◽  
pp. 2731-2745 ◽  
Author(s):  
P. ATTEN ◽  
J.-N. FOULC ◽  
N. FELICI

A conduction model is proposed to explain the electrorheological effect under D.C. or low frequency A.C. fields. An approximate analysis taking into account the bulk conduction of the solid and the nonlinear conduction properties of the liquid is confirmed by experiments on large scale spheres. A good agreement between measurements and predictions is also obtained when air replaces the liquid. Finally the predictions are extended to the case of surface conduction of the solid spheres.

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 293
Author(s):  
Zhipeng Zhu ◽  
Houlin Liu

The pressure fluctuation characteristics of a rim driven propulsion pump are studied by an experimental method firstly, and then its unsteady inner flow is studied by numerical simulation to reveal the generating mechanism of the pressure fluctuation. In the experiment, a monitoring point was set in a downstream region with a distance of 1D (D, Diameter of impeller) to the impeller. The monitoring point’s dominant frequencies within a low frequency band are 1APF (APF, Axial Passing Frequency) and 2APF. In the numerical simulation, the main fluctuation near the impeller region appears at 1BPF (BPF, Blade Passing Frequency) and as the monitoring point moves downstream, the amplitude becomes smaller. The 1BPF fluctuation nearly disappears when the distance exceeds 1D, and the main frequency moves to 1APF and 2APF, which is in good agreement with the experimental results in the low frequency band. The transient velocity, pressure and vorticity distribution were studied to reveal the causes of 1BPF, 1APF and 2APF fluctuation. The main cause of 1BPF is the jet from the tail of the blade and the main cause of 2APF is the movement of a large-scale double vortex structure on both sides of the low-pressure zone. The movement of the vortex group near the wall may be the main cause that induces the 1APF fluctuation.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Liver Cancer ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 734-743
Author(s):  
Kazuya Kariyama ◽  
Kazuhiro Nouso ◽  
Atsushi Hiraoka ◽  
Akiko Wakuta ◽  
Ayano Oonishi ◽  
...  

<b><i>Introduction:</i></b> The ALBI score is acknowledged as the gold standard for the assessment of liver function in patients with hepatocellular carcinoma (HCC). Unlike the Child-Pugh score, the ALBI score uses only objective parameters, albumin (Alb) and total bilirubin (T.Bil), enabling a better evaluation. However, the complex calculation of the ALBI score limits its applicability. Therefore, we developed a simplified ALBI score, based on data from a large-scale HCC database.We used the data of 5,249 naïve HCC cases registered in eight collaborating hospitals. <b><i>Methods:</i></b> We developed a new score, the EZ (Easy)-ALBI score, based on regression coefficients of Alb and T.Bil for survival risk in a multivariate Cox proportional hazard model. We also developed the EZ-ALBI grade and EZ-ALBI-T grade as alternative options for the ALBI grade and ALBI-T grade and evaluated their stratifying ability. <b><i>Results:</i></b> The equation used to calculate the EZ-ALBI score was simple {[T.Bil (mg/dL)] – [9 × Alb (g/dL)]}; this value highly correlated with the ALBI score (correlation coefficient, 0.981; <i>p</i> &#x3c; 0.0001). The correlation was preserved across different Barcelona clinic liver cancer grade scores (regression coefficient, 0.93–0.98) and across different hospitals (regression coefficient, 0.98–0.99), indicating good generalizability. Although a good agreement was observed between ALBI and EZ-ALBI, discrepancies were observed in patients with poor liver function (T.Bil, ≥3 mg/dL; regression coefficient, 0.877). The stratifying ability of EZ-ALBI grade and EZ-ALBI-T grade were good and their Akaike’s information criterion values (35,897 and 34,812, respectively) were comparable with those of ALBI grade and ALBI-T grade (35,914 and 34,816, respectively). <b><i>Conclusions:</i></b> The EZ-ALBI score, EZ-ALBI grade, and EZ-ALBI-T grade are useful, simple scores, which might replace the conventional ALBI score in the future.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1474
Author(s):  
Ruben Tapia-Olvera ◽  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Omar Aguilar-Mejia

This proposal is aimed to overcome the problem that arises when diverse regulation devices and controlling strategies are involved in electric power systems regulation design. When new devices are included in electric power system after the topology and regulation goals were defined, a new design stage is generally needed to obtain the desired outputs. Moreover, if the initial design is based on a linearized model around an equilibrium point, the new conditions might degrade the whole performance of the system. Our proposal demonstrates that the power system performance can be guaranteed with one design stage when an adequate adaptive scheme is updating some critic controllers’ gains. For large-scale power systems, this feature is illustrated with the use of time domain simulations, showing the dynamic behavior of the significant variables. The transient response is enhanced in terms of maximum overshoot and settling time. This is demonstrated using the deviation between the behavior of some important variables with StatCom, but without or with PSS. A B-Spline neural networks algorithm is used to define the best controllers’ gains to efficiently attenuate low frequency oscillations when a short circuit event is presented. This strategy avoids the parameters and power system model dependency; only a dataset of typical variable measurements is required to achieve the expected behavior. The inclusion of PSS and StatCom with positive interaction, enhances the dynamic performance of the system while illustrating the ability of the strategy in adding different controllers in only one design stage.


2021 ◽  
Vol 11 (15) ◽  
pp. 6688
Author(s):  
Jesús Romero Leguina ◽  
Ángel Cuevas Rumin ◽  
Rubén Cuevas Rumin

The goal of digital marketing is to connect advertisers with users that are interested in their products. This means serving ads to users, and it could lead to a user receiving hundreds of impressions of the same ad. Consequently, advertisers can define a maximum threshold to the number of impressions a user can receive, referred to as Frequency Cap. However, low frequency caps mean many users are not engaging with the advertiser. By contrast, with high frequency caps, users may receive many ads leading to annoyance and wasting budget. We build a robust and reliable methodology to define the number of ads that should be delivered to different users to maximize the ROAS and reduce the possibility that users get annoyed with the ads’ brand. The methodology uses a novel technique to find the optimal frequency capping based on the number of non-clicked impressions rather than the traditional number of received impressions. This methodology is validated using simulations and large-scale datasets obtained from real ad campaigns data. To sum up, our work proves that it is feasible to address the frequency capping optimization as a business problem, and we provide a framework that can be used to configure efficient frequency capping values.


2021 ◽  
Vol 11 (3) ◽  
pp. 1243
Author(s):  
Hongseok Jeong ◽  
Jeung-Hoon Lee ◽  
Yong-Hyun Kim ◽  
Hanshin Seol

The dominant underwater noise source of a ship is known to be propeller cavitation. Recently, attempts have been made to quantify the source strength using on-board pressure sensors near the propeller, as this has advantages over conventional noise measurement. In this study, a beamforming method was used to estimate the source strength of a cavitating propeller. The method was validated against a model-scale measurement in a cavitation tunnel, which showed good agreement between the measured and estimated source levels. The method was also applied to a full-scale measurement, in which the source level was measured using an external hydrophone array. The estimated source level using the hull pressure sensors showed good agreement with the measured one above 400 Hz, which shows potential for noise monitoring using on-board sensors. A parametric study was carried out to check the practicality of the method. From the results, it was shown that a sufficient recording time is required to obtain a consistent level at high frequencies. Changing the frequency resolution had little effect on the result, as long as enough data were provided for the one-third octave band conversion. The number of sensors affected the mid- to low-frequency data.


1998 ◽  
Vol 58 (3) ◽  
pp. 3768-3776 ◽  
Author(s):  
B. Weyssow ◽  
J. D. Reuss ◽  
J. Misguich

2010 ◽  
Vol 138 (4) ◽  
pp. 1368-1382 ◽  
Author(s):  
Jeffrey S. Gall ◽  
William M. Frank ◽  
Matthew C. Wheeler

Abstract This two-part series of papers examines the role of equatorial Rossby (ER) waves in tropical cyclone (TC) genesis. To do this, a unique initialization procedure is utilized to insert n = 1 ER waves into a numerical model that is able to faithfully produce TCs. In this first paper, experiments are carried out under the idealized condition of an initially quiescent background environment. Experiments are performed with varying initial wave amplitudes and with and without diabatic effects. This is done to both investigate how the properties of the simulated ER waves compare to the properties of observed ER waves and explore the role of the initial perturbation strength of the ER wave on genesis. In the dry, frictionless ER wave simulation the phase speed is slightly slower than the phase speed predicted from linear theory. Large-scale ascent develops in the region of low-level poleward flow, which is in good agreement with the theoretical structure of an n = 1 ER wave. The structures and phase speeds of the simulated full-physics ER waves are in good agreement with recent observational studies of ER waves that utilize wavenumber–frequency filtering techniques. Convection occurs primarily in the eastern half of the cyclonic gyre, as do the most favorable conditions for TC genesis. This region features sufficient midlevel moisture, anomalously strong low-level cyclonic vorticity, enhanced convection, and minimal vertical shear. Tropical cyclogenesis occurs only in the largest initial-amplitude ER wave simulation. The formation of the initial tropical disturbance that ultimately develops into a tropical cyclone is shown to be sensitive to the nonlinear horizontal momentum advection terms. When the largest initial-amplitude simulation is rerun with the nonlinear horizontal momentum advection terms turned off, tropical cyclogenesis does not occur, but the convectively coupled ER wave retains the properties of the ER wave observed in the smaller initial-amplitude simulations. It is shown that this isolated wave-only genesis process only occurs for strong ER waves in which the nonlinear advection is large. Part II will look at the more realistic case of ER wave–related genesis in which a sufficiently intense ER wave interacts with favorable large-scale flow features.


Sign in / Sign up

Export Citation Format

Share Document