USE OF IBA TECHNIQUES FOR THE MEASUREMENT OF OXIDATION PROCESSES IN SIALON CERAMICS

2001 ◽  
Vol 15 (28n29) ◽  
pp. 1305-1313 ◽  
Author(s):  
I. W. M. BROWN ◽  
G. C. BARRIS ◽  
C. M. SHEPPARD ◽  
W. J. TROMPETTER ◽  
I. C. VICKRIDGE

Sialon ceramics (Si-Al-O-N) are high performance engineering materials used as cutting tools and wear parts whose performance may be compromised by high temperature oxidation. Ion Beam Analysis (IBA) techniques, coupled with X-ray Diffraction, have been used to monitor oxidation processes in dense bodies of α/β-sialon, X-sialon and O-sialon subjected to heat treatment schedules in air to induce surface oxidation. This has permitted depth profiling of Si, Al, Y, O, & N in the sialon bodies, enabling direct comparison of oxidation resistance to be made between the different sialon compositions.

2010 ◽  
Vol 638-642 ◽  
pp. 1384-1389 ◽  
Author(s):  
Sven Neve ◽  
Kurt Stiebing ◽  
Lothar P.H. Schmidt ◽  
Hans Eberhard Zschau ◽  
Patrick J. Masset ◽  
...  

Using the halogen effect TiAl-alloys can be protected against high-temperature oxidation. Two different fluorination methods were applied to turbine blades. The mass increase due to oxidation can be drastically reduced compared to untreated specimen. A new vacuum chamber for ion beam analysis was developed to analyze the real parts. Using PIGE-technique the F-content as a function of depth before and after oxidation was detected. Thickness and composition of the oxide scale were measured by RBS. Both ion beam methods were non destructive and thus enabled for the first time quality assurance of the halogen treatment on real components.


2013 ◽  
Vol 46 (2) ◽  
pp. 505-511 ◽  
Author(s):  
B. Khanbabaee ◽  
A. Biermanns ◽  
S. Facsko ◽  
J. Grenzer ◽  
U. Pietsch

This article reports on surface density variations that are accompanied by ion-beam-induced pattern formation processes on Si. The density profiles perpendicular to Si(100) surfaces were investigated after off-normal implantation with 5 keV Fe+ions at fluences ranging from 1 × 1016to 5 × 1017 ions cm−2. Ripple formation was observed for ion fluences above 1 × 1016 ions cm−2. X-ray reflectivity (XRR) revealed the formation of a nanometre subsurface layer with incorporated Fe. Using XRR, no major dependence of the surface density on the ion fluence could be found. In order to improve the surface sensitivity, extremely asymmetric X-ray diffraction was applied. Depth profiling was achieved by measuring X-ray rocking curves as a function of the decreasing incidence angle down to 0° using this noncoplanar scattering geometry. The density information was extracted from the dynamical Bragg shift of the diffraction peak caused by refraction of the X-ray beam at the air–sample interface. Simulations based on the dynamical theory of X-ray diffraction revealed a decrease of density for increasing ion fluence in a region close to the surface, caused by the amorphization and surface roughening.


1990 ◽  
Vol 5 (1) ◽  
pp. 74-82 ◽  
Author(s):  
A. L. Cabrera ◽  
J. F. Kirner ◽  
R. Pierantozzi

The reaction of SiH4/H2 mixtures with iron and steels was studied at a total pressure of 1 atm and temperatures above 500 °C. When the amount of water vapor in the gas mixture is carefully controlled, a metal silicide diffusion coating forms at low temperatures (below 900°C). Composition and structure of the Si diffusion coatings were determined with Auger depth profiling and x-ray diffraction. Kinetics of the surface reaction between SiH4, and the metal substrate as well as the behavior of these films in severe environments at high temperatures were studied by a microgravimetric technique. Characterization of these Si coatings on iron, low carbon steel (1010), 9% Cr/1% Mo steel (alloy A182F9), and stainless steels (310) and their applications to reduce oxidation, nitriding, or coking at high temperatures or corrosion in mineral acids are described.


2019 ◽  
Vol 21 ◽  
pp. 21-23
Author(s):  
Klára Kroftová ◽  
David Škoda ◽  
Ivo Kuřitka ◽  
Jan Kubát

An application of hydroxide nanoparticles in preservation of cultural heritage attracted great interest. The nanodispersions of calcium, magnesium or barium hydroxides exhibit high performance in consolidation abilities. In this work we focused on preparation of magnesium and barium hydroxide nanoparticles. For the synthetic procedure we used acetate precursors and sodium hydroxide. Obtained particles were dispersed in 2-propanol. Hydroxide nanoparticles were characterized by powder X-Ray diffraction, infrared spectroscopy and scanning electron microscopy. It was observed that smaller particles were achieved in case of magnesium hydroxide. Presented work demonstrates that this reaction procedure can be applied for preparation of materials used in cultural heritage preservation.


2020 ◽  
Vol 10 (14) ◽  
pp. 4810
Author(s):  
Jozefína Pokrývková ◽  
Štefan Ailer ◽  
Jaroslav Jedlička ◽  
Peter Chlebo ◽  
Ľuboš Jurík

We examined the effect of two different technological processes for wine production on qualitative parameters of wine. We used the reductive method, which is currently considered to be the conventional method, and a targeted must oxidation method. We evaluated the basic physicochemical parameters and sensory attributes of wine as well as the content of phenolic substances in wine, which are responsible for the oxidation processes. The vegetable materials used were the grape varieties, Welschriesling, Chardonnay, and Rheinriesling. The content of phenolic substances was determined by HPLC (high-performance liquid chromatography), and the basic analytical parameters of wine were determined by FT-IR (Fourier Transform Infrared Spectroscopy) spectrometry. The sensory analysis was evaluated according to the International Union of Oenologists. For each of the wines examined, the total content of phenolic substances decreased after the targeted oxidation method was applied. For the Welschriesling variety produced by the reduction method, the total content of the 19 monitored phenolic substances in the year 2015 was 88.37 mg·L−1, and for the wine produced by target oxygenation, it was 68.63 mg·L−1. This represents a decrease of 21.5%. In the year 2016, the decrease was 20.91%. By reducing the content of phenolic substances, the oxidation processes in wines are eliminated after bottling. Thus, there is less need for sulphating wines with a reduced content of phenols.


2012 ◽  
Vol 538-541 ◽  
pp. 276-280
Author(s):  
Xian Xiu Mei ◽  
Jian Qiang Fu ◽  
Xiao Fei Liu ◽  
Jun Xu ◽  
You Nian Wang

In this paper, the DZ4 Ni-based superalloy was irradiated by high intensity pulsed C ion and H ion beam. The parameters of ion beam were: accelerating voltage 250 kV, pulse duration 70 ns, ion current density 160 A/cm2. Irradiation pulses were 2, 5, 10 and 15. The morphology of DZ4 before and after irradiation was observed by scanning electron microscope (SEM). The phase structure and stress state were analyzed by X-ray diffraction (XRD). The results show that there were some craters on the surface of the sample after irradiation, as the irradiation time increased, the crater boundary became blurred and even disappeared. The surface tensile stress produced by initial irradiation could be relieved after several irradiations pulses. The corrosion resistance of irradiated DZ4 alloy was improved greatly. The continuous and dense α-Al2O3 layer that formed on irradiated DZ4 surface at 1000°C atmosphere increased the high temperature oxidation resistance.


Author(s):  
Mark Denker ◽  
Jennifer Wall ◽  
Mark Ray ◽  
Richard Linton

Reactive ion beams such as O2+ and Cs+ are used in Secondary Ion Mass Spectrometry (SIMS) to analyze solids for trace impurities. Primary beam properties such as energy, dose, and incidence angle can be systematically varied to optimize depth resolution versus sensitivity tradeoffs for a given SIMS depth profiling application. However, it is generally observed that the sputtering process causes surface roughening, typically represented by nanometer-sized features such as cones, pits, pyramids, and ripples. A roughened surface will degrade the depth resolution of the SIMS data. The purpose of this study is to examine the relationship of the roughness of the surface to the primary ion beam energy, dose, and incidence angle. AFM offers the ability to quantitatively probe this surface roughness. For the initial investigations, the sample chosen was <100> silicon, and the ion beam was O2+.Work to date by other researchers typically employed Scanning Tunneling Microscopy (STM) to probe the surface topography.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Shuqi Zhao ◽  
Tongtong Yu ◽  
Ziming Wang ◽  
Shilei Wang ◽  
Limei Wei ◽  
...  

Two-dimensional (2D) materials driven by their unique electronic and optoelectronic properties have opened up possibilities for their various applications. The large and high-quality single crystals are essential to fabricate high-performance 2D devices for practical applications. Herein, IV-V 2D GeP single crystals with high-quality and large size of 20 × 15 × 5 mm3 were successfully grown by the Bi flux growth method. The crystalline quality of GeP was confirmed by high-resolution X-ray diffraction (HRXRD), Laue diffraction, electron probe microanalysis (EPMA) and Raman spectroscopy. Additionally, intrinsic anisotropic optical properties were investigated by angle-resolved polarized Raman spectroscopy (ARPRS) and transmission spectra in detail. Furthermore, we fabricated high-performance photodetectors based on GeP, presenting a relatively large photocurrent over 3 mA. More generally, our results will significantly contribute the GeP crystal to the wide optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document