Facile deposition of carbon-doped TiO2 films by two-electrode electrodeposition setup

2021 ◽  
pp. 2150175
Author(s):  
Necati Basman ◽  
Mehmet Gokcen

This study presents a simple electrochemical deposition route to obtain carbon-doped TiO2 films. The deposition of the films is carried out on silicon substrates from a mixture of methanol (CH3OH) and Titanium (IV) isopropoxide (Ti[OCH(CH3)2]4) solution using a simple two-electrode electrodeposition setup. The obtained films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Visible diffuse reflectance spectroscopy (DRS) and conductivity measurements. Depending on the deposition conditions, both amorphous and crystalline TiO2 films could be obtained. It is found that carbon is doped both substitutionally and interstitially. High carbon doping (up to 18.96%) enables to obtain TiO2 film with narrowed bandgap and high conductivity to about 2.3 eV and [Formula: see text] S cm[Formula: see text], respectively. This study suggests that the proposed electrodeposition route offers an easy way of obtaining conductive and narrowed bandgap TiO2 films on large surface areas.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2139 ◽  
Author(s):  
Chukwuka Bethel Anucha ◽  
Ilknur Altin ◽  
Zekeriya Biyiklioglu ◽  
Emin Bacaksiz ◽  
Ismail Polat ◽  
...  

ZnWO4MnPc was synthesized via a hydrothermal autoclave method with 1 wt.% manganese (iii) phthalocyanine content. The material was characterized for its structural and morphological features via X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, transmission emission microscopy (TEM), scanning electron microscopy-Energy dispersive X-ray spectroscopy (SEM-EDX), N2 adsorption–desorption at 77K, X-ray photoelectron spectroscopy (XPS), and UV-visible/diffuse reflectance spectroscopy(UV-vis/DRS). ZnWO4MnPc photocatalytic performance was tested on the degradation of bisphenol A (BPA). The ZnWO4MnPc material removed 60% of BPA after 4 h of 365 nm UV irradiation. Degradation process improved significantly to about 80% removal in the presence of added 5 mM H2O2 after 4 h irradiation. Almost 100% removal was achieved after 30 min under 450 nm visible light irradiation in the presence of same concentration of H2O2. The effect of ions and humic acid (HA) towards BPA removal was also investigated.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Silija Padikkaparambil ◽  
Binitha Narayanan ◽  
Zahira Yaakob ◽  
Suraja Viswanathan ◽  
Siti Masrinda Tasirin

Nanogold doped TiO2catalysts are synthesized, and their application in the photodegradation of dye pollutants is studied. The materials are characterized using different analytical techniques such as X-ray diffraction, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The results revealed the strong interaction between the metallic gold nanoparticles and the anatase TiO2support. Au doped systems showed very good photoactivity in the degradation of dye pollutants under UV irradiation as well as in sunlight. A simple mechanism is proposed for explaining the excellent photoactivity of the systems. The reusability studies of the photocatalysts exhibited more than 98% degradation of the dye even after 10 repeated cycles.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2012 ◽  
Vol 90 (1) ◽  
pp. 39-43 ◽  
Author(s):  
X. Xiang ◽  
D. Chang ◽  
Y. Jiang ◽  
C.M. Liu ◽  
X.T. Zu

Anatase TiO2 thin films are deposited on K9 glass samples at different substrate temperatures by radio frequency magnetron sputtering. N ion implantation is performed in the as-deposited TiO2 thin films at ion fluences of 5 × 1016, 1 × 1017, and 5 × 1017 ions/cm2. X-ray diffraction, atomic force microscope, X-ray photoelectron spectroscopy (XPS), and UV–visible spectrophotometer are used to characterize the films. With increasing N ion fluences, the absorption edges of anatase TiO2 films shift to longer wavelengths and the absorbance increases in the visible light region. XPS results show that the red shift of TiO2 films is due to the formation of N–Ti–O compounds. As a result, photoactivity is enhanced with increasing N ion fluence.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Patcharanan Junploy ◽  
Titipun Thongtem ◽  
Somchai Thongtem ◽  
Anukorn Phuruangrat

SrSn(OH)6 precursors synthesized by a cyclic microwave radiation (CMR) process were calcined at 900°C for 3 h to form rod-like SrSnO3. Further, the rod-like SrSnO3 and AgNO3 in ethylene glycol (EG) were ultrasonically vibrated to form rod-like Ag/SrSnO3 composites, characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electron microscopy (EM), Fourier transform infrared (FTIR) spectroscopy, and UV-visible analysis. The photocatalyses of rod-like SrSnO3, 1 wt%, 5 wt%, and 10 wt% Ag/SrSnO3 composites were studied for degradation of methylene blue (MB, C16H18N3SCl) dye under ultraviolet (UV) radiation. In this research, the 5 wt% Ag/SrSnO3 composites showed the highest activity, enhanced by the electron-hole separation process. The photoactivity became lower by the excessive Ag nanoparticles due to the negative effect caused by reduction in the absorption of UV radiation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jiang Zhang ◽  
Zheng-Hong Huang ◽  
Yong Xu ◽  
Feiyu Kang

The iodine-doped Bi2WO6(I-BWO) photocatalyst was prepared via a hydrothermal method using potassium iodide as the source of iodine. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) spectroscopy. The photocatalytic activity of I-BWO for the degradation of rhodamine B (RhB) was higher than that of pure BWO and I2-BWO regardless of visible light (>420 nm) or ultraviolet light (<400 nm) irradiation. The results of DRS analysis showed that the I-BWO and I2-BWO catalysts had narrower band gaps. XPS analysis proved that the multivalent iodine species including I0and were coadsorbed on the defect surface of Bi2WO6in I-BWO. The enhanced PL intensity revealed that a large number of defects of oxygen vacancies were formed by the doping of iodine. The enhanced photocatalytic activity of I-BWO for degradation of RhB was caused by the synergetic effect of a small crystalline size, a narrow band gap, and plenty of oxygen vacancies.


2015 ◽  
Vol 72 (12) ◽  
pp. 2122-2131 ◽  
Author(s):  
MengMeng Xu ◽  
YaLei Zhao ◽  
QiShe Yan

Bi7O9I3, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi7O9I3. The result of SEM observation shows that the as-synthesized Bi7O9I3 consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi7O9I3 at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO3− and SO42– of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi7O9I3. The as-synthesized Bi7O9I3 exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Yongbiao Wan ◽  
Sihong Wang ◽  
Wenhao Luo ◽  
Lianhua Zhao

Adjusting pH with an ammonia solution during the synthesis, single-crystalline BiVO4has been prepared using Bi(NO3)3·5H2O and NH4VO3as starting materials through aqueous-phase precipitation at room temperature. The prepared samples are characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM). The impact of pH on structure, surface morphology, visible-light photocatalytic activity, and light absorption performance of BiVO4is explored and discussed. During the synthesis process, neither extremely acidic (low pH) nor basic (high pH) conditions are desirable for the formation of BiVO4in monoclinic phase. The highest photocatalytic performance on the degradation of a methylene blue solution is observed under pH=7.0for BiVO4in monoclinic scheelite, which is attributed to its small grain size and marked surface oxygen evolution ability.


2016 ◽  
Vol 4 (18) ◽  
pp. 6946-6954 ◽  
Author(s):  
E. N. K. Glover ◽  
S. G. Ellington ◽  
G. Sankar ◽  
R. G. Palgrave

The nature and effects of rhodium and antimony doping in TiO2 have been investigated using X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and diffuse reflectance spectroscopy.


2014 ◽  
Vol 636 ◽  
pp. 7-10 ◽  
Author(s):  
Pei Song Tang ◽  
Chao Wan Tang ◽  
Jia Ni Ying ◽  
Dong Jing Ni ◽  
Qian Yang ◽  
...  

Using Fe (NO3)3⋅9H2O, Y(NO3)3⋅6H2O and citric acid as the main raw material, the YFeO3 nanoparticles were synthesized by ultrasonic assisted process and calcination. The YFeO3 nanoparticles were characterized by thermogravimetry and differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the perovskite structureYFeO3 (YFeO3-800) can be obtained through the calcination of ultrasonic processed YFeO3 precursors at 800 °C, and the resulting product has a particle size of 70 nm and an optical band gap of 2.0 eV. Consequently, the YFeO3-800 nanoparticles show high photocatalytic activity for decomposition of methyl orange under visible-light irradiation.


Sign in / Sign up

Export Citation Format

Share Document