A Low-Cost RFID Regulator Insensitive to Temperature and Supply Voltage Variations

2017 ◽  
Vol 26 (10) ◽  
pp. 1750153
Author(s):  
Dawei Li ◽  
Dongsheng Liu ◽  
Xuecheng Zou ◽  
Ke Yao ◽  
Chaojian Kang ◽  
...  

A low-cost regulator insensitive to temperature and supply voltage variations for power management units of Radio Frequency Identification (RFID) tag chips and other batteryless devices is proposed in this paper. The commonly used regulator has poor temperature rejection ratio (TRR) and poor voltage rejection ratio (VRR). By using combination resistors and long channel transistors, the bias and regulator circuits are improved over temperature variations. A power supply rejection (PSR) enhancement branch is also added to suppress the supply noise and stabilize the bias current. The regulator is designed and fabricated in the HJTC 0.25[Formula: see text][Formula: see text]m CMOS technology. Simulation results show that this regulator achieves 0.044[Formula: see text]mV/[Formula: see text]C TRR when temperature varies from [Formula: see text]C to 70[Formula: see text]C and 1.1[Formula: see text]mV/V VRR while the supply voltage of the regulator ranges from 4 to 12[Formula: see text]V. The PSR is nearly [Formula: see text]100[Formula: see text]dB at DC. The area of this regulator is 0.102[Formula: see text]mm2 including the bias circuit. The measurement results meet simulation results well and this regulator is successfully applied in HF passive tag chips within voltage deviations of [Formula: see text] of 2.5[Formula: see text]V.

Author(s):  
M. S. Amin ◽  
M. B. I. Reaz ◽  
J. Jalil ◽  
L. F. Rahman

Radio frequency identification (RFID) is lagging behind because of vendor specific solutions and expensiveimplementation cost. In particular, the reader is the most expensive part. A WiFi compatible tag was proposed to usethe WNIC as an RFID reader. However, no specific modulator or demodulator was suggested. This paper analyzesthe various IEEE 802.11 standards and their modulation and coding techniques keeping the desired properties of anRFID system in consideration. After the analysis, a digital modulator and demodulator for RFID tag in IEEE 802.11protocol employing Direct Sequence Spread-Spectrum (DSSS) and coding is proposed. A MOD-11 synchronouscounter is designed for the 11-bit encoder which generates the desired Barker code. Data are multiplied with thisBarker code to modulate the data, and the received data are multiplied with the Barker code to demodulate them. Theproposed modulator and demodulator are implemented in 0.18μm CMOS technology. The simulation results showthat 1 bit is spread to 11 bits by the modulator and 11-bit received data are demodulated to 1 bit correctly. Theproposed design is simple, resistant to multipath fading and interference and offers the highest distance with thelowest BER for an RFID tag.


2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Yasuhiro Takahashi ◽  
Hiroki Koyasu ◽  
S. Dinesh Kumar ◽  
Himanshu Thapliyal

Abstract Silicon Physical Unclonable Function (PUF) is a general hardware security primitive for security vulnerabilities. Recently, Quasi-adiabatic logic based physical unclonable function (QUALPUF) has ultra low-power dissipation; hence it is suitable to implement in low-power portable electronic devices such radio frequency identification (RFID) and wireless sensor networks (WSN), etc. In this paper, we present a design of 4-bit QUALPUF which is based on static random access memory (SRAM) for low-power portable electronic devices and then shows the post-layout simulation and measurement results. To evaluate the uniqueness and reliability, the 4-bit QUALPUF is implemented in 0.18 $$\upmu$$ μ m standard CMOS process with 1.8 V supply voltage. The 4-bit QUALPUF occupies 58.7$$\times$$ × 15.7 $$\upmu \mathrm {m}^{2}$$ μ m 2 of layout area. The post-layout simulation results illustrate that the uniqueness calculated from the inter-die HDs of the 4-bit QUALPUF is 47.58%, the average reliability is 95.10%, and the the energy dissipation is 29.73 fJ/cycle/bit. The functional measurement results of the fabricated chip are the same as the post-layout simulation results.


2015 ◽  
Vol 2 (2) ◽  
pp. 86-96 ◽  
Author(s):  
M. Zomorrodi ◽  
N.C. Karmakar

The electromagnetic (EM) imaging technique at mm-band 60 GHz is proposed for data encoding purpose in the chipless Radio Frequency Identification (RFID) systems. The fully printable chipless RFID tag comprises tiny conductive EM polarizers to create high cross-polar radar cross-section. Synthetic aperture radar approach is applied for formation of the tag's EM-image and revealing the tag's content. The achieved high data encoding capacity of 2 bits/cm2in this technique based on a fully printable tag is very convincing for many applications. The system immunity to multipath interference, bending effect, and printing inaccuracy suggests huge potentials for low-cost item tagging. Tags are also readable through a tick paper envelop; hence secure identification is provided by the proposed technique.


Sensor Review ◽  
2017 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
Yawei Xu ◽  
Lihong Dong ◽  
Haidou Wang ◽  
Jiannong Jing ◽  
Yongxiang Lu

Purpose Radio frequency identification tags for passive sensing have attracted wide attention in the area of Internet of Things (IoT). Among them, some tags can sense the property change of objects without an integrated sensor, which is a new trend of passive sensing based on tag. The purpose of this paper is to review recent research on passive self-sensing tags (PSSTs). Design/methodology/approach The PSSTs reported in the past decade are classified in terms of sensing mode, composition and the ways of power supply. This paper presents operation principles of PSSTs and analyzes the characteristics of them. Moreover, the paper focuses on summarizing the latest sensing parameters of PSSTs and their matching equipment. Finally, some potential applications and challenges faced by this emerging technique are discussed. Findings PSST is suitable for long-term and large-scale monitoring compared to conventional sensors because it gets rid of the limitation of battery and has relatively low cost. Also, the static information of objects stored in different PSSTs can be identified by a single reader without touch. Originality/value This paper provides a detailed and timely review of the rapidly growing research in PSST.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450004 ◽  
Author(s):  
XIAOBO XUE ◽  
XIAOLEI ZHU ◽  
QIFENG SHI ◽  
LENIAN HE

In this paper, a 12-bit current-steering digital-to-analog converter (DAC) employing a deglitching technique is proposed. The deglitching technique is realized by lowering the voltage swing of the control signal as well as by using a method of glitch counteraction (GC). A new switch–driver structure is designed to enable the effectiveness of the GC and provide sufficient driving capability under a low supply voltage. Moreover, the control signal's rise/fall asymmetry which increases the glitch error can be suppressed by using the proposed switch–driver structure. The 12-bit DAC is implemented in 180 nm CMOS technology. The measurement results show that the spurious free dynamic range (SFDR) at low signal frequency is 78.8 dB, and it is higher than 70 dB up to 60 MHz signal frequency at 400 MS/s. The measured INL and DNL are both less than ±0.6 LSB.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3746 ◽  
Author(s):  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

In this article, an overview of recent advances in the field of battery-less near-field communication (NFC) sensors is provided, along with a brief comparison of other short-range radio-frequency identification (RFID) technologies. After reviewing power transfer using NFC, recommendations are made for the practical design of NFC-based tags and NFC readers. A list of commercial NFC integrated circuits with energy-harvesting capabilities is also provided. Finally, a survey of the state of the art in NFC-based sensors is presented, which demonstrates that a wide range of sensors (both chemical and physical) can be used with this technology. Particular interest arose in wearable sensors and cold-chain traceability applications. The availability of low-cost devices and the incorporation of NFC readers into most current mobile phones make NFC technology key to the development of green Internet of Things (IoT) applications.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Taikyu Kim ◽  
Cheol Hee Choi ◽  
Pilgyu Byeon ◽  
Miso Lee ◽  
Aeran Song ◽  
...  

AbstractAchieving high-performance p-type semiconductors has been considered one of the most challenging tasks for three-dimensional vertically integrated nanoelectronics. Although many candidates have been presented to date, the facile and scalable realization of high-mobility p-channel field-effect transistors (FETs) is still elusive. Here, we report a high-performance p-channel tellurium (Te) FET fabricated through physical vapor deposition at room temperature. A growth route involving Te deposition by sputtering, oxidation and subsequent reduction to an elemental Te film through alumina encapsulation allows the resulting p-channel FET to exhibit a high field-effect mobility of 30.9 cm2 V−1 s−1 and an ION/OFF ratio of 5.8 × 105 with 4-inch wafer-scale integrity on a SiO2/Si substrate. Complementary metal-oxide semiconductor (CMOS) inverters using In-Ga-Zn-O and 4-nm-thick Te channels show a remarkably high gain of ~75.2 and great noise margins at small supply voltage of 3 V. We believe that this low-cost and high-performance Te layer can pave the way for future CMOS technology enabling monolithic three-dimensional integration.


Author(s):  
Emran Md Amin ◽  
Nemai Chandra Karmakar

A novel approach for non-invasive radiometric Partial Discharge (PD) detection and localization of faulty power apparatuses in switchyards using Chipless Radio Frequency Identification (RFID) based sensor is presented. The sensor integrates temperature sensing together with PD detection to assist on-line automated condition monitoring of high voltage equipment. The sensor is a multi-resonator based passive circuit with two antennas for reception of PD signal from the source and transmission of the captured PD to the base station. The sensor captures PD signal, processes it with designated spectral signatures as identification data bits, incorporates temperature information, and retransmits the data with PD signals to the base station. Analyzing the PD signal in the base station, both the PD levels and temperature of a particular faulty source can be retrieved. The prototype sensor was designed, fabricated, and tested for performance analysis. Results verify that the sensor is capable of identifying different sources at the events of PD. The proposed low cost passive RFID based PD sensor has a major advantage over existing condition monitoring techniques due to its scalability to large substations for mass deployment.


Sign in / Sign up

Export Citation Format

Share Document