A New Low Voltage Analog Circuit Model for Hodgkin–Huxley Neuron Employing FGMOS Transistors

2018 ◽  
Vol 27 (09) ◽  
pp. 1850141
Author(s):  
Ava Salmanpour ◽  
Ebrahim Farshidi ◽  
Karim Ansari Asl

A low voltage analog VLSI circuit model for Hodgkin–Huxley (HH) neuron cell equations (HH neuron model) is presented. Floating gate MOSFET (FGMOS) transistors in weak inversion region have been used to model HH equations such as gating variables, [Formula: see text] and [Formula: see text] functions and combined action of [Formula: see text], [Formula: see text] and [Formula: see text]. The combination of [Formula: see text], [Formula: see text] and [Formula: see text] controls the Na[Formula: see text] and K[Formula: see text] channel currents. The superiorities of the proposed circuits are low supply voltage, low power consumption, less circuit complexity and as a result, low costs are compared to the previous works. The proposed circuit which uses 24 transistors is simulated in Hspice software using 0.18[Formula: see text] technology and consumes 119[Formula: see text][Formula: see text]W.

2016 ◽  
Vol 25 (06) ◽  
pp. 1650066 ◽  
Author(s):  
Pantre Kompitaya ◽  
Khanittha Kaewdang

A current-mode CMOS true RMS-to-DC (RMS: root-mean-square) converter with very low voltage and low power is proposed in this paper. The design techniques are based on the implicit computation and translinear principle by using CMOS transistors that operate in the weak inversion region. The circuit can operate for two-quadrant input current with wide input dynamic range (0.4–500[Formula: see text]nA) with an error of less than 1%. Furthermore, its features are very low supply voltage (0.8[Formula: see text]V), very low power consumption ([Formula: see text]0.2[Formula: see text]nW) and low circuit complexity that is suitable for integrated circuits (ICs). The proposed circuit is designed using standard 0.18[Formula: see text][Formula: see text]m CMOS technology and the HSPICE simulation results show the high performance of the circuit and confirm the validity of the proposed design technique.


2014 ◽  
Vol 17 (1) ◽  
pp. 62-70
Author(s):  
Khanh Trung Le ◽  
Tu Trong Bui ◽  
Hung Duc Le ◽  
Kha Cong Pham

In the paper, we present a design of a low voltage Operation Amplifier (OPAMP) circuit using split-length transistors. Indirect feedback compensation is an advanced technique used to stabilize the operation of an OPAMP. Cascode transistors are usually implemented for indirect feedback systems. However, these transistors are not suitable for low voltage design. In this study, we have taken advantage of split-length transistors and indirect feedback compensation technique to design a high performance OPAMP. As a result, the OPAMP operates not only at low supply voltage but also at high frequency. The OPAMP has been designed and fabricated in a 0.18um CMOS technology. This OPAMP achieves 100 dB gain, 90 MHz unity gain frequency and 60 degrees phase margin at 2 V supply voltage.


2017 ◽  
Vol 26 (08) ◽  
pp. 1740003 ◽  
Author(s):  
Daniel Arbet ◽  
Viera Stopjaková ◽  
Martin Kováč ◽  
Lukáš Nagy ◽  
Matej Rakús ◽  
...  

In this paper, a variable gain amplifier (VGA) designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven (BD) design approach, which brings a possibility to operate with low supply voltage. Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no risk of latch-up event that usually represents the main drawback of the BD circuit systems. BD transistors are employed in the input differential stage, which makes it possible to operate in rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide scale, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications. An additional circuit responsible for maintaining the linear-in-decibel gain dependency of the VGA is also addressed. The proposed circuit block avails arbitrary shaping of the curve characterizing the gain versus the controlling voltage dependency.


2013 ◽  
Vol 22 (07) ◽  
pp. 1350053 ◽  
Author(s):  
S. REKHA ◽  
T. LAXMINIDHI

This paper presents an active-RC continuous time filter in 0.18 μm standard CMOS technology intended to operate on a very low supply voltage of 0.5 V. The filter designed, has a 5th order Chebyshev low pass response with a bandwidth of 477 kHz and 1-dB passband ripple. A low-power operational transconductance amplifier (OTA) is designed which makes the filter realizable. The OTA uses bulk-driven input transistors and feed-forward compensation in order to increase the Dynamic Range and Unity Gain Bandwidth, respectively. The paper also presents an equivalent circuit of the OTA and explains how the filter can be modeled using descriptor state-space equations which will be used for design centering the filter in the presence of parasitics. The designed filter offers a dynamic range of 51.3 dB while consuming a power of 237 μW.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maneesha Gupta ◽  
Richa Srivastava ◽  
Urvashi Singh

This paper presents novel floating gate MOSFET (FGMOS) based differential voltage squarer using FGMOS characteristics in saturation region. The proposed squarer is constructed by a simple FGMOS based squarer and linear differential voltage attenuator. The squarer part of the proposed circuit uses one of the inputs of two-input FGMOS transistor for threshold voltage cancellation so as to implement a perfect squarer function, and the differential voltage attenuator part acts as input stage so as to generate the differential signals. The proposed circuit provides a current output proportional to the square of the difference of two input voltages. The second order effect caused by parasitic capacitance and mobility degradation is discussed. The circuit has advantages such as low supply voltage, low power consumption, and low transistor count. Performance of the circuit is verified at ±0.75 V in TSMC 0.18 μm CMOS, BSIM3, and Level 49 technology by using Cadence Spectre simulator.


Author(s):  
Jetsdaporn Satansup ◽  
Worapong Tangsrirat

A circuit technique for designing a compact low-voltage current-mode multiplier/divider circuit in CMOS technology is presented.  It is based on the use of a compact current quadratic cell able to operate at low supply voltage.  The proposed circuit is designed and simulated for implementing in TSMC 0.25-m CMOS technology with a single supply voltage of 1.5 V.  Simulation results using PSPICE, accurately agreement with theoretical ones, have been provided, and also demonstrate a maximum linearity error of 1.5%, a THD less than 2% at 100 MHz, a total power consumption of 508 W, and -3dB small-signal frequency of about 245 MHz.


2013 ◽  
Vol 760-762 ◽  
pp. 526-530
Author(s):  
Ming Li ◽  
Zhi Qun Li ◽  
Chen Jian Wu ◽  
Meng Zhang ◽  
Jia Cao ◽  
...  

This paper introduces a 2.4 GHz down-conversion quadrature mixer which applied in the Wireless Sensor Network (WSN). The mixer uses a folded structure which is modified based on the conventional Gilbert mixer. It is designed in 0.18μm RF CMOS process with a low supply voltage of 1V. The post-simulation results show that the mixer achieves a conversion gain (CG) of 9.0dB, the input 1dB compression point (IP1dB) of-7.6dBm, the third-order input intercept point (IIP3) of 2.2dBm, and the single side-band (SSB) noise figure (NF) is 13.9dB. The mixer core consumes current about 1.2mA from a 1V power supply.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1769 ◽  
Author(s):  
Choongkeun Lee ◽  
Taegun Yim ◽  
Hongil Yoon

As the supply voltage decreases, there is a need for a high-speed negative charge pump circuit, for example, to produce the back-bias voltage (VBB) with high pumping efficiency at a low supply voltage (VDD). Beyond the basic negative charge pump circuit with the small area overhead, advanced schemes such as hybrid pump circuit (HCP) and cross-coupled hybrid pump circuits (CHPC) were introduced to improve the pumping efficiency and pump down speed. However, they still suffer from pumping efficiency degradation, low level |VBB|, and small pumping currents at very low VDD. A novel negative charge pump using an enhanced pumping clock is proposed. The proposed cross-coupled charge pump consists of the enhanced pumping clock generator (ECG) having a pair of inverters and PMOS latch circuit to produce an enhanced control signal with a greater amplitude, thereby working efficiently especially at low supply voltages. The proposed scheme is validated with a HSPICE simulation using the TSMC 180 nm process. The proposed scheme can be operated down to VDD = 0.4 V, and |VBB|/VDD is obtained to be 86.1% at VDD = 0.5 V and Cload = 20 nF. Compared to the state-of-the-art CHPC scheme, the pumping efficiency is larger by 35% at VDD = 0.6 V and RL = 10 KΩ, and the pumping current is 2.17 times greater at VDD = 1.2 V and VBB = 0 V, making the circuit suitable for very low supply voltage applications in DRAMs.


Author(s):  
MOHAMMAD HADI DANESH ◽  
SASAN NIKSERESHT ◽  
MAHYAR DEHDAST

In this paper a low-power current-mode RMS-to-DC converter is proposed. The proposed converter includes absolute value circuit, squarer/divider circuit, low-pass filter and square root circuit which employ CMOS transistors operating in weak inversion region. The RMS-to-DC converter has low power consumption (<1μW), low supply voltage (0.9V), wide input range (from 50 nA to 500 nA), low relative error (<3 %), and low circuit complexity. Comparing the proposed circuit with two other current-mode circuits shows that the former outperforms the latters in terms of power dissipation, supply voltage, and complexity. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.


Author(s):  
MOHAMMAD HADI DANESH ◽  
MAHYAR DEHDAST ◽  
ABDOLGHANI AREKHI ◽  
AMIN EMAMI FARD

In this paper a low-power current-mode RMS-to-DC converter is proposed. The converter includes two-quadrant squarer/divider and the first-order low-pass filter cell, both of them use MOS translinear loops. The RMS-to-DC converter has low power consumption (< 0.75μW), low supply voltage (0.8 V), wide input range (from 40 nA to 500 nA), low relative error (< 3 %), and low circuit complexity. Comparing the proposed circuit with two other current-mode circuits shows that the former outperforms the latters in terms of power dissipation, supply voltage, and complexity. Simulation results by HSPICE show high performance of the circuit and confirm the validity of the proposed design technique.


Sign in / Sign up

Export Citation Format

Share Document