Automation Software for Semiconductor Research Laboratories: Electrical Parameter Calculation Program (SeCLaS-PC)

2020 ◽  
Vol 29 (13) ◽  
pp. 2050215
Author(s):  
A. Akkaya ◽  
E. Ayyıldız

We prepared a simple program for basic electrical measurements and parameter extraction from these measurements of metal–semiconductor (MS) contacts. In this paper, we introduce a basic electrical parameter calculation software (SeCLaS-PC) for semiconductor laboratories from the temperature-dependent/independent current–voltage ([Formula: see text]–[Formula: see text]), capacitance– voltage ([Formula: see text]–[Formula: see text]) and capacitance–frequency ([Formula: see text]–[Formula: see text]) measurement results. SeCLaS-PC program was developed using Keysight VEE Pro (Visual Engineering Environment) software and the program has a user-friendly graphical interface. More than 50 device parameters can be easily obtained, using different methods, from the [Formula: see text]–[Formula: see text], temperature-dependent [Formula: see text]–[Formula: see text] and temperature-dependent [Formula: see text]–[Formula: see text] measurement results for one device, with our SeCLaS-PC program.

2003 ◽  
Vol 765 ◽  
Author(s):  
Guilhem Larrieu ◽  
Emmanuel Dubois ◽  
Xavier Wallart

AbstractOne of the grand challenge imposed by CMOS down-scaling is the optimisation of the source/drain (S/D) architecture, e.g., dopant activation above solid solubility, steep dopant profiling, low silicide specific contact resistivity. Recently, the concept of very low Schottky barrier S/D MOSFET has emerged as a possible alternative to conventional architecture using highly doped S/D and midgap silicide ohmic contacts. For p-MOSFETs integration, platinum silicide is an excellent candidate because of its very low barrier to holes. This enables the use of a weakly doped substrate that inherently solves the aforementioned challenges due to highly doped S/D. This paper proposes a detailed study of the platinum silicidation reaction obtained by rapid thermal annealing. The analysis is based on X-ray photoemission spectroscopy (XPS), transmission electron miscrocopy (TEM) and low temperature-dependent current-voltage measurements. Using XPS analysis, it is shown that: i) an initial silicide layer is formed at room temperature, ii) three stable phases Pt, Pt2Si, PtSi can not coexist providing that iii) the annealing ambience is strictly controlled to avoid the formation of a SiO2 barrier due to oxygen penetration into the platinum overlayer. Starting from an initial 15 nm thick Pt layer subsequently annealing at 300°C, TEM cross-sections reveal that homogeneous 32 nm PtSi layers with a uniform grain size distribution are formed. Finally, current-voltage characteristics have been measured on a special test structure that accounts for the lateral disposition of S/D regions in a typical MOSFET architecture. It consists in two back-to-back Schottky contacts separated by a narrow silicon gap both on bulk silicon and Silicon-On-Insulator (SOI) substrates. Based on temperature-dependent electrical measurements (Arrhenius plot), it is shown that field emission is involved in the current transport mechanism, in addition to thermionic emission. An excellent current drive performance of 220 μA per micron width has been obtained for a 45 nm silicon gap on a 10 nm thick SOI substrate.


Author(s):  
LiLung Lai ◽  
Nan Li ◽  
Qi Zhang ◽  
Tim Bao ◽  
Robert Newton

Abstract Owing to the advancing progress of electrical measurements using SEM (Scanning Electron Microscope) or AFM (Atomic Force Microscope) based nanoprober systems on nanoscale devices in the modern semiconductor laboratory, we already have the capability to apply DC sweep for quasi-static I-V (Current-Voltage), high speed pulsing waveform for the dynamic I-V, and AC imposed for C-V (Capacitance-Voltage) analysis to the MOS devices. The available frequency is up to 100MHz at the current techniques. The specification of pulsed falling/rising time is around 10-1ns and the measurable capacitance can be available down to 50aF, for the nano-dimension down to 14nm. The mechanisms of dynamic applications are somewhat deeper than quasi-static current-voltage analysis. Regarding the operation, it is complicated for pulsing function but much easy for C-V. The effective FA (Failure Analysis) applications include the detection of resistive gate and analysis for abnormal channel doping issue.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
Fortunato Pezzimenti ◽  
Hichem Bencherif ◽  
Giuseppe De Martino ◽  
Lakhdar Dehimi ◽  
Riccardo Carotenuto ◽  
...  

A numerical simulation study accounting for trap and defect effects on the current-voltage characteristics of a 4H-SiC-based power metal-oxide-semiconductor field effect transistor (MOSFET) is performed in a wide range of temperatures and bias conditions. In particular, the most penalizing native defects in the starting substrate (i.e., EH6/7 and Z1/2) as well as the fixed oxide trap concentration and the density of states (DoS) at the 4H-SiC/SiO2 interface are carefully taken into account. The temperature-dependent physics of the interface traps are considered in detail. Scattering phenomena related to the joint contribution of defects and traps shift the MOSFET threshold voltage, reduce the channel mobility, and penalize the device current capabilities. However, while the MOSFET on-state resistance (RON) tends to increase with scattering centers, the sensitivity of the drain current to the temperature decreases especially when the device is operating at a high gate voltage (VGS). Assuming the temperature ranges from 300 K to 573 K, RON is about 2.5 MΩ·µm2 for VGS > 16 V with a percentage variation ΔRON lower than 20%. The device is rated to perform a blocking voltage of 650 V.


Author(s):  
Salah K. Kanaan ◽  
Amer Omanovic

In 2004, a decision was made to perform a modernization and a new power uprate of unit 2 at Oskarshamn nuclear power plant in Sweden. Among the most important reasons for this decision were new safety regulations from Swedish Radiation Safety Authority and ageing of important components. A project was established and became the largest nuclear power modernization in the world. The modernization led to the need of analysing the auxiliary power system to ensure that it could supply the unit after the uprate, given tolerances on current, voltage and frequency. During the process of developing models for the diesel generator sets, it turned out that the suppliers could not deliver enough satisfactory material for modelling the diesel engines, the speed controllers and the magnetization systems. Therefore, Oskarshamn nuclear power plant with the help of the manufacturers of the diesel generator sets carried out additional measurements in order to collect data for modelling. Based on electric circuit diagrams provided by the manufacturers, block diagrams of the magnetization systems were made. For the speed controllers, no information was available at all so it was assumed that the controller was of PI-type. The parameters of the magnetization systems and the speed controllers were then tuned using the measurement results. Finally, a comparison between simulated results and the measurement results were made, showing good agreement. This is especially true in the most commonly used operating interval of the diesel generator sets.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay4213 ◽  
Author(s):  
Yang Hu ◽  
Fred Florio ◽  
Zhizhong Chen ◽  
W. Adam Phelan ◽  
Maxime A. Siegler ◽  
...  

Spin and valley degrees of freedom in materials without inversion symmetry promise previously unknown device functionalities, such as spin-valleytronics. Control of material symmetry with electric fields (ferroelectricity), while breaking additional symmetries, including mirror symmetry, could yield phenomena where chirality, spin, valley, and crystal potential are strongly coupled. Here we report the synthesis of a halide perovskite semiconductor that is simultaneously photoferroelectricity switchable and chiral. Spectroscopic and structural analysis, and first-principles calculations, determine the material to be a previously unknown low-dimensional hybrid perovskite (R)-(−)-1-cyclohexylethylammonium/(S)-(+)-1 cyclohexylethylammonium) PbI3. Optical and electrical measurements characterize its semiconducting, ferroelectric, switchable pyroelectricity and switchable photoferroelectric properties. Temperature dependent structural, dielectric and transport measurements reveal a ferroelectric-paraelectric phase transition. Circular dichroism spectroscopy confirms its chirality. The development of a material with such a combination of these properties will facilitate the exploration of phenomena such as electric field and chiral enantiomer–dependent Rashba-Dresselhaus splitting and circular photogalvanic effects.


2012 ◽  
Vol 1465 ◽  
Author(s):  
Paul Farrar ◽  
Del Atkinson ◽  
Andrew J. Gallant

ABSTRACTBiologically relevant lipid bilayers supported on highly ordered pyrolytic graphite (HOPG) were probed both mechanically and electrically with a Conductive Atomic Force Microscope (C-AFM) capable of measuring ultra-low currents. Results show that these membranes undergo an elastic response up to 26 nN on average when compressed with an AFM tip. Measuring the films with a low contact force demonstrates that contact mode AFM can be used repeatedly to image without damaging the film. Based on current-voltage measurements made with the C-AFM, it is shown that apparently high resistances seen for the films could be the result of variable electrical contact between the tip and surface. As a result, the paper proposes that the deflection of the cantilever should always be measured in order to ensure knowledge of the location of the tip during all electrical measurements.


1999 ◽  
Vol 607 ◽  
Author(s):  
S. Kato ◽  
T. Horikoshi ◽  
T. Ohkubo ◽  
T. Iida ◽  
Y. Takano

AbstractThe bulk crystal of silicon germanium was grown by vertical Bridgman method with germanium composition, x, varying from 0.6 to 1.0. The temperature dependent variation of the mobility is indicative of alloy scattering dominantly for the bulk wafer. Phosphorus was diffused in as-grown p-type bulk wafer at 850 °C to form pn-junction, and the diffusion coefficient of phosphorus was evaluated as a function of x. The diffusion behavior of phosphorus in silicon germanium is closely correlated with the germanium self-diffusion with changing x. For specimens with lower content x, P concentration profiles indicated “kink and tail” shape, while it was not observed for higher x. For current-voltage characteristics measurement, an ideality factor was obtained.


Sign in / Sign up

Export Citation Format

Share Document