scholarly journals GENERALIZED QUANTUM RELATIVISTIC KINEMATICS: A STABILITY POINT OF VIEW

2004 ◽  
Vol 13 (10) ◽  
pp. 2003-2034 ◽  
Author(s):  
C. CHRYSSOMALAKOS ◽  
E. OKON

We apply Lie algebra deformation theory to the problem of identifying the stable form of the quantum relativistic kinematical algebra. As a warm up, given Galileo's conception of spacetime as input, some modest computer code we wrote zeroes in on the Poincaré-plus-Heisenberg algebra in about a minute. Further ahead, along the same path, lies a three-dimensional deformation space, with an instability double cone through its origin. We give physical as well as geometrical arguments supporting our view that moment, rather than position operators, should enter as generators in the Lie algebra. With this identification, the deformation parameters give rise to invariant length and mass scales. Moreover, standard quantum relativistic kinematics of massive, spinless particles corresponds to non-commuting moment operators, a purely quantum effect that bears no relation to spacetime non-commutativity, in sharp contrast to earlier interpretations.

2007 ◽  
Vol 16 (09) ◽  
pp. 1519-1529 ◽  
Author(s):  
N. G. GRESNIGT ◽  
P. F. RENAUD ◽  
P. H. BUTLER

The stabilized Poincare–Heisenberg algebra (SPHA) is a Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after combining the Lie algebras of quantum mechanics and relativity. In this paper, we show how the sixteen-dimensional real Clifford algebras Cℓ(1,3) and Cℓ(3,1) can both be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional stability considerations. It is conceptually easier and more straightforward to work with a Clifford algebra. The Clifford algebra path suggests that the next evolutionary step toward a theory of physics at the interface of GR and QM might be to depart from working in spacetime and instead to work in spacetime–momentum.


Author(s):  
Marcin Lefik ◽  
Krzysztof Komeza ◽  
Ewa Napieralska-Juszczak ◽  
Daniel Roger ◽  
Piotr Andrzej Napieralski

Purpose The purpose of this paper is to present a comparison between reluctance synchronous machine-enabling work at high internal temperature (HT° machine) with laminated and solid rotor. Design/methodology/approach To obtain heat sources for the thermal model, calculations of the electromagnetic field were made using the Opera 3D program including effect of rotation and the resulting eddy current losses. To analyse the thermal phenomenon, the 3D coupled thermal-fluid (CFD) model is used. Findings The presented results show clearly that laminated construction is much better from a point of view of efficiency and temperature. However, solid construction can be interesting for high speed machines due to their mechanical robustness. Research limitations/implications The main problem, despite the use of parallel calculations, is the long calculation time. Practical implications The obtained simulation and experimental results show the possibility of building a machine operating at a much higher ambient temperature than it was previously produced for example in the vicinity of the aircraft turbines. Originality/value The paper presents the application of fully three-dimensional coupled electromagnetic and thermal analysis of new machine constructions designed for elevated temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Ali Kargarnejad ◽  
Mohsen Taherbaneh ◽  
Amir Hosein Kashefi

Tracking maximum power point of a solar panel is of interest in most of photovoltaic applications. Solar panel modeling is also very interesting exclusively based on manufacturers data. Knowing that the manufacturers generally give the electrical specifications of their products at one operating condition, there are so many cases in which the specifications in other conditions are of interest. In this research, a comprehensive one-diode model for a solar panel with maximum obtainable accuracy is fully developed only based on datasheet values. The model parameters dependencies on environmental conditions are taken into consideration as much as possible. Comparison between real data and simulations results shows that the proposed model has maximum obtainable accuracy. Then a new fuzzy-based controller to track the maximum power point of the solar panel is also proposed which has better response from speed, accuracy and stability point of view respect to the previous common developed one.


2001 ◽  
Vol 10 (3) ◽  
pp. 312-330 ◽  
Author(s):  
Bernard Harper ◽  
Richard Latto

Stereo scene capture and generation is an important facet of presence research in that stereoscopic images have been linked to naturalness as a component of reported presence. Three-dimensional images can be captured and presented in many ways, but it is rare that the most simple and “natural” method is used: full orthostereoscopic image capture and projection. This technique mimics as closely as possible the geometry of the human visual system and uses convergent axis stereography with the cameras separated by the human interocular distance. It simulates human viewing angles, magnification, and convergences so that the point of zero disparity in the captured scene is reproduced without disparity in the display. In a series of experiments, we have used this technique to investigate body image distortion in photographic images. Three psychophysical experiments compared size, weight, or shape estimations (perceived waist-hip ratio) in 2-D and 3-D images for the human form and real or virtual abstract shapes. In all cases, there was a relative slimming effect of binocular disparity. A well-known photographic distortion is the perspective flattening effect of telephoto lenses. A fourth psychophysical experiment using photographic portraits taken at different distances found a fattening effect with telephoto lenses and a slimming effect with wide-angle lenses. We conclude that, where possible, photographic inputs to the visual system should allow it to generate the cyclopean point of view by which we normally see the world. This is best achieved by viewing images made with full orthostereoscopic capture and display geometry. The technique can result in more-accurate estimations of object shape or size and control of ocular suppression. These are assets that have particular utility in the generation of realistic virtual environments.


Author(s):  
S. V. Subramanian ◽  
R. Bozzola ◽  
Louis A. Povinelli

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.


Author(s):  
Guomin Ji ◽  
Bernt J. Leira ◽  
Svein Sævik ◽  
Frank Klæbo ◽  
Gunnar Axelsson ◽  
...  

This paper presents results from a case study performed to evaluate the residual capacity of a 6″ flexible pipe when exposed to corrosion damages in the tensile armour. A three-dimensional nonlinear finite element model was developed using the computer code MARC to evaluate the increase in mean and dynamic stresses for a given number of damaged inner tensile armor wires. The study also includes the effect of these damages with respect to the associated stresses in the pressure spiral. Furthermore, the implications of a sequence of wire failures with respect to the accumulated time until cross-section failure in a probabilistic sense are addressed.


Author(s):  
Е.И. Чучкалова ◽  
О.Г. Маскина

Статья посвящена организации учебного процесса в высшей школе. Авторы, в частности, считают, что лекционные и практические занятия должны начинаться и заканчиваться разминкой, подразумевающей выполнение коротких упражнений. С помощью специально проведенного исследования в работе анализируются структурные особенности учебных разминок, уточняются их отличия от бизнес-разминок, применяемых в ходе тренингов, а также рассматривается с содержательной и организационной точек зрения специфика применения разминок в высшей школе. Выводы сделаны с учетом мнения преподавателей и студентов, уже имеющих опыт участия в разминках. Научная новизна публикации заключается в расширении представлений о возможностях, которые открываются при использовании разминок в учебном процессе. В статье проведена их классификация по различным критериям: виду активности, массовости, желаемому результату, формату проведения. Кроме того, автор обобщил собственный практический опыт использования инструментов бизнес-тренингов, накопленный в ходе подготовки бакалавров и магистрантов, привел примеры наиболее популярных упражнений в каждой группе матрицы разминок. Особое внимание уделено разминкам, сопровождающим вебинары, что продолжает оставаться чрезвычайно актуальным в свете современного перехода на смешанный формат обучения в профессиональном образовании. Статья предназначена для преподавателей и студентов высших и средних профессиональных образовательных организаций. The article focuses on the organization of the educational process in higher education. The author, in particular, believes that lectures and practical classes should begin and end with a warm-up, which implies doing short exercises. With the help of specially conducted research, the paper analyzes the structural features of training warm-ups, clarifies their differences from business warm-ups used during training, and also considers the specifics of using warm-ups in higher education from a substantive and organizational point of view. The conclusions are made considering the opinions of teachers and students who already have experience of doing warm-ups. The scientific novelty of the publication lies in bringing better understanding of the opportunities that open up with using warm-ups in the educational process. The article classifies them according to various criteria: the type of activity, mass character, the desired result, the format of the event. In addition, the author summarized his own practical experience of using business training tools during the preparation of bachelors and undergraduates gave examples of the most popular exercises in each group of the warm-up matrix. Special attention is paid to the warm-ups accompanying webinars, which continues to be extremely relevant in the light of the modern transition to a mixed format of training in vocational education. The article is intended for teachers and students of higher and secondary professional educational organizations.


2021 ◽  
Vol 25 (1) ◽  
pp. 30-37
Author(s):  
Sarah Klopp Christensen ◽  
Aaron Wayne Johnson ◽  
Natalie Van Wagoner ◽  
Taryn E. Corey ◽  
Matthew S. McClung ◽  
...  

Irish dance has evolved in aesthetics that lead to greater physical demands on dancers' bodies. Irish dancers must land from difficult moves without letting their knees bend or heels touch the ground, causing large forces to be absorbed by the body. The majority of injuries incurred by Irish dancers are due to overuse (79.6%). The purpose of this study was to determine loads on the body of female Irish dancers, including peak force, rise rate of force, and impulse, in eight common Irish hard shoe and soft shoe dance movements. It was hypothesized that these movements would produce different ground reac- tion force (GRF) characteristics. Sixteen female Irish dancers were recruited from the three highest competitive levels. Each performed a warm-up, reviewed the eight movements, and then performed each movement three times on a force plate, four in soft shoes and four in hard shoes. Ground reaction forces were measured using a three-dimensional force plate recording at 1,000 Hz. Peak force, rise rate, and vertical impulse were calculated. Peak forces normalized by each dancer's body weight for each of these variables were significantly different between move- ments and shoe types [F(15, 15)= 65.4, p < 0.01; F(15, 15) = 65.0, p < 0.01; and F(15, 15) = 67.4, p < 0.01, respectively]. The variable years of experience was not correlated with peak force, rise rate, or impulse (p > 0.40). It is concluded that there was a large range in GRF characteristics among the eight movements studied. Understanding the force of each dance step will allow instructors to develop training routines that help dancers adapt gradually to the high forces experienced in Irish dance training and competitions, thereby limiting the potential for overuse injuries.


1994 ◽  
Vol 116 (2) ◽  
pp. 327-332 ◽  
Author(s):  
T. Green ◽  
A. B. Turner

The upstream wheelspace of an axial air turbine stage complete with nozzle guide vanes (NGVs) and rotor blades (430 mm mean diameter) has been tested with the objective of examining the combined effect of NGVs and rotor blades on the level of mainstream ingestion for different seal flow rates. A simple axial clearance seal was used with the rotor spun up to 6650 rpm by drawing air through it from atmospheric pressure with a large centrifugal compressor. The effect of rotational speed was examined for several constant mainstream flow rates by controlling the rotor speed with an air brake. The circumferential variation in hub static pressure was measured at the trailing edge of the NGVs upstream of the seal gap and was found to affect ingestion significantly. The hub static pressure distribution on the rotor blade leading edges was rotor speed dependent and could not be measured in the experiments. The Denton three-dimensional C.F.D. computer code was used to predict the smoothed time-dependent pressure field for the rotor together with the pressure distribution downstream of the NGVs. The level and distribution of mainstream ingestion, and thus the seal effectiveness, was determined from nitrous oxide gas concentration measurements and related to static pressure measurements made throughout the wheelspace. With the axial clearance rim seal close to the rotor the presence of the blades had a complex effect. Rotor blades in connection with NGVs were found to reduce mainstream ingestion seal flow rates significantly, but a small level of ingestion existed even for very high levels of seal flow rate.


Sign in / Sign up

Export Citation Format

Share Document