Characteristics of the projectile and target fragments produced in 84Kr36 — emulsion interaction at 1GeV per nucleon

2020 ◽  
Vol 29 (09) ◽  
pp. 2050077
Author(s):  
S. Kumar ◽  
M. K. Singh ◽  
R. K. Jain ◽  
V. Singh

In the present analysis, we have focused on the emission characteristics of the projectile and target fragments produced from the interaction of [Formula: see text]Kr with nuclear emulsion at 1 A GeV. We have studied the variation of the fragmentation parameter for singly charged [Formula: see text], doubly charged [Formula: see text], lower multiple-charged [Formula: see text]–[Formula: see text], medium multiple-charged [Formula: see text]–[Formula: see text] and higher multiple-charged [Formula: see text], projectile fragments with respect to mass of the projectile and found that they are showing the different behaviors for different projectile fragments. We have also studied the emission behavior of shower particles, with respect to the black and gray particles. The present studies show that the production of shower particles strongly depends on the incident kinetic energy of the projectile and also depending on the interaction of the different types of target nuclei of nuclear emulsion.

1995 ◽  
Vol 16 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Isao H. Suzuki ◽  
Norio Saito

Ionic fragmentation of NO stimulated by soft X-ray absorption has been studied using a monochromatized synchrotron radiation and a time-of-flight mass spectrometer. In photoexcitation of a 1s electron, the singly charged molecular ion NO+ was formed only at 410 and 533 eV (transitions to the 2π orbital), and a fragment ion N+ had the highest intensity in all the energies. The doubly charged molecular ion was produced appreciably, and fragment ions (N2+ and O2+) were formed considerably even below the 1s ionization thresholds. The measured time-of-flight spectra were converted into kinetic energy distributions of N+, O+, N2+ and O2+ at photon energies for characteristic excitation by a simulation calculation. The dissociation pathways from the core-hole states of NO were discussed using the kinetic energy distribution and ion intensity ratios as well as Auger electron spectra in the literature.


When a singly-charged ion A collides with a normal atom B an electron may be transferred from 15 to A with the result that A becomes a neutral atom and B becomes a singly-charged ion. If the ionization potential of A is greater than that of B this process results in an evolution of energy equal to the difference between the ionization energies of A and B . If a doubly-charged ion A collides with a normal atom B , an electron being transferred from B to A during the collision, the process results in two singly-charged ions. The energy liberated in this process is equivalent to the difference between the second ionization potential of A and the first ionization potential of B . This may be partially or wholly employed in exciting one of the resulting ions or in increasing the kinetic energy of the separating particles.


Author(s):  
Dominik Wehrli ◽  
Matthieu Génévriez ◽  
Frédéric Merkt

We present a new method to study doubly charged molecules relying on high-resolution spectroscopy of the singly charged parent cation, and report on the first spectroscopic characterization of a thermodynamically stable diatomic dication, MgAr2+.


2021 ◽  
Vol 11 (13) ◽  
pp. 6209
Author(s):  
Iwona Pajak ◽  
Grzegorz Pajak

This paper presents the usage of holonomic mobile humanoid manipulators to carry out autonomous tasks in industrial environments, according to the smart factory concept and the Industry 4.0 philosophy. The problem of transporting lengthy objects, taking into account mechanical limitations, the conditions for avoiding collisions, as well as the dexterity of the manipulator arms was considered. The primary problem was divided into three phases, leading to three different types of robotic tasks. In the proposed approach, the pseudoinverse Jacobian method at the acceleration level to solve each of the tasks was used. The redundant degrees of freedom were used to satisfy secondary objectives such as robot kinetic energy, the maximization of the manipulability measure, and the fulfillment mechanical and collision-avoidance limitations. A computer example involving a mobile humanoid manipulator, operating in an industrial environment, illustrated the effectiveness of the proposed method.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2345-2352 ◽  
Author(s):  
B. MANIL ◽  
P. BODUCH ◽  
A. CASSIMI ◽  
O. KAMALOU ◽  
L. MAUNOURY ◽  
...  

Clusters of C 60 fullerenes are (multi)-ionised in collisions with O 5+ projectiles at a collision energy of 100 keV. The dominant fragmentation channels are analysed by time-of-flight mass spectrometry for different cluster size distributions. Singly charged [Formula: see text], ions are found to be the dominant fragments, in 25% connected with the loss of one or more C 2-units. This result is explained by the large charge mobility in fullerene clusters. Doubly charged fragments, in form of [Formula: see text] and [Formula: see text], contribute to the observed spectrum with less than 5–10% only and are mainly attributed to the fragmentation of dimers. Singly charged small carbon clusters in the size range n = 7 to 19 are formed with low kinetic energies indicating the importance of thermal dissociation processes. The present experiments confirm earlier conclusions on the charge mobility in fullerene clusters.


1986 ◽  
Vol 40 (4) ◽  
pp. 434-445 ◽  
Author(s):  
M. A. Vaughan ◽  
G. Horlick

In inductively coupled plasma/mass spectrometry analyte, M may be distributed among several species forms including doubly charged ions (M2+), singly charged ions (M+), mono-oxide ions (MO+), and hydroxide ions (MOH+). Detailed data are presented for Ba to illustrate the dependence of the ion count of these species and their ratios (M2+/M+, MO+/M+, and MOH+/M+) on nebulizer flow rate, plasma power, and sampling depth. Although these data are representative of most elements, many form oxides to a much greater degree than Ba; data are presented for Ti, W, and Ce to illustrate this fact. These various analyte species are important in that serious interelement interferences can occur because of spectral overlap. An extensive pair of tables indicating potential spectral interferences caused by element oxide, hydroxide, and doubly charged ions is presented.


Author(s):  
David J. Harvey ◽  
Weston B. Struwe ◽  
Anna-Janina Behrens ◽  
Snezana Vasiljevic ◽  
Max Crispin

AbstractStructural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M – H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans. Graphical abstract


Author(s):  
А.А. Басалаев ◽  
А.Г. Бузыкин ◽  
В.В. Кузьмичев ◽  
М.Н. Панов ◽  
А.В. Петров ◽  
...  

Radiation damage to isolated glycyl-leucine (C8H16N2O3) molecules caused by interaction with He2+ ions was studied. For the first time, the relative cross sections of the main processes of changes in the charge state of the collision partners and the relative cross sections of the fragmentation processes of singly and doubly charged molecular ions formed during single collisions of glycyl-leucine molecules with ions have been obtained. The optimized geometry of the molecule and singly charged glycyl-leucine ion was calculated using the density functional theory (DFT).


2011 ◽  
Vol 199-200 ◽  
pp. 193-197 ◽  
Author(s):  
Cheng Cheng Zhang ◽  
Qian Wang ◽  
Zhi Xia He ◽  
Ping Jiang

In order to investigate the influence of combustion chamber geometry on spray and combustion characteristics in diesel engine, universal CFD software STAR-CD is applied to simulate the combustion processes in three different types of combustion chambers of diesel engine. The effect of combustion chamber geometry on in–cylinder air motion, temperature field and exhaust emissions are researched in this paper. Comparing with experimental results, calculation models are proved to be validity. The results show that differences of combustion chamber shape change the characteristic of flow field in cylinder, which affects the formation of mixed gas and determines the combustion and emission characteristics.


Sign in / Sign up

Export Citation Format

Share Document