HYDROPHOBIC SURFACE MODIFICATION OF SILK FABRIC USING PLASMA-POLYMERIZED HMDSO

2018 ◽  
Vol 25 (02) ◽  
pp. 1850060 ◽  
Author(s):  
K. VINISHA RANI ◽  
NISHA CHANDWANI ◽  
PURVI KIKANI ◽  
S. K. NEMA ◽  
ARUN KUMAR SARMA ◽  
...  

In this work, we study the hydrophobic properties of silk fabrics by deposition of plasma-polymerized (pp) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition. Recently, hydrophobic properties are under active research in textile industry. The effects of coating time and power on the HMDSO-coated silk fabrics are investigated. Water contact angle of pp-HMDSO-coated silk fabric surface is measured as a function of power and coating time. Fabric surface shows an enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy reveals the surface chemistry, and scanning electron microscopy shows the surface morphology of the uncoated and HMDSO-coated fabrics, respectively. In the case of uncoated fabric, water droplet absorbs swiftly, whereas in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140[Formula: see text]. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains such as ink, tea, milk, turmeric and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. In order to study the self-cleaning property, the fabric is tilted to 45[Formula: see text] angle; stain droplets easily roll off from the fabric.

2020 ◽  
Vol 90 (13-14) ◽  
pp. 1616-1627
Author(s):  
Li-Zhi Gao ◽  
Yu Bao ◽  
Hai-Hua Cai ◽  
Ai-Ping Zhang ◽  
Yan Ma ◽  
...  

Silk fabrics have poor resistance to ultraviolet (UV) light and to wrinkles. To improve these properties, we propose a finishing method of coating the silk fabric surface with nano-silica (nano-SiO2). The results show that the UV protective factor (UPF) value could reach a maximum of 84.52 after finishing in 10 g/L nano-SiO2 and 20 g/L silane coupling agent (KH570) solution at 80℃. Moreover, the treated silk fabrics showed improved wrinkle resistance and hydrophobicity. The surface morphology and crosslink action of the treated silk fabrics were characterized by scanning electron microscope, energy dispersive spectrometer and Fourier transform infrared spectroscopy, which proved that nano-SiO2 particles were grafted on to the silk fabric. There was no apparent difference in color between untreated and treated silk fabrics. Thermal stability and cytotoxicity tests showed that the treated silk fabrics had good thermostability and cytocompatibility. The UPF value could be maintained at 77.31 after washing 20 times, which demonstrated that the treated silk fabrics had laundry resistance. Multifunctional silk fabrics with good hydrophobic properties and excellent UV and wrinkle resistance were developed, showing good prospects for their application in self-cleaning, protective and non-ironing clothes.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 471 ◽  
Author(s):  
Martha Claros ◽  
Milena Setka ◽  
Yecid P. Jimenez ◽  
Stella Vallejos

Non-modified (ZnO) and modified (Fe2O3@ZnO and CuO@ZnO) structured films are deposited via aerosol assisted chemical vapor deposition. The surface modification of ZnO with iron or copper oxides is achieved in a second aerosol assisted chemical vapor deposition step and the characterization of morphology, structure, and surface of these new structured films is discussed. X-ray photoelectron spectrometry and X-ray diffraction corroborate the formation of ZnO, Fe2O3, and CuO and the electron microscopy images show the morphological and crystalline characteristics of these structured films. Static water contact angle measurements for these structured films indicate hydrophobic behavior with the modified structures showing higher contact angles compared to the non-modified films. Overall, results show that the modification of ZnO with iron or copper oxides enhances the hydrophobic behavior of the surface, increasing the contact angle of the water drops at the non-modified ZnO structures from 122° to 135° and 145° for Fe2O3@ZnO and CuO@ZnO, respectively. This is attributed to the different surface properties of the films including the morphology and chemical composition.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1257
Author(s):  
Eshraga A. A. Siddig ◽  
Yu Zhang ◽  
Baojing Yang ◽  
Tianshu Wang ◽  
Jianjun Shi ◽  
...  

A durable flame-resistant and ultra-hydrophobic phosphorus–fluoride coating on aramid fabrics was achieved by plasma-induced graft polymerization. The aramid fabrics were activated and roughed through the low-pressure plasma firstly, which involves the sequential coating of a mixture of phosphorus–fluoride emulsion copolymer. When potentially exposed to flame or water, such a surface produces a dual effect in which it is intumescent and waterproof, successfully giving the coated fabrics flame-resistant ultra-hydrophobic bifunctional properties. Thus, adhesive coatings provide a convenient way to resolve the issue of washing durability of the coatings. The as-prepared fabrics last for 10 repeatable washing cycles without losing their flame resistance and superhydrophobicity, suggesting future applications as advanced multifunctional textiles. Compared to an untreated coating, its char length was less than 1 cm with no measurable after-flame or after-glow times, and its static water contact angle remained stable above 170°. Meanwhile, the control sample was unable to extinguish the fire with a damage length of 10.6 cm and a water contact angle of 100°. All the results indicate that plasma-reactive polar groups interact between phosphorus and fluorine elements, leading to an increased relative atom ratio P and F through Energy-Dispersive Spectrometer (EDS) spectra and XPS analysis, which inhibits the flammability and wettability.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 534
Author(s):  
Alessio Aufoujal ◽  
Ulrich Legrand ◽  
Jean-Luc Meunier ◽  
Jason Robert Tavares

Photo-initiated chemical vapor deposition (PICVD) functionalizes carbon nanotube (CNT)-enhanced porous substrates with a highly polar polymeric nanometric film, rendering them super-hydrophilic. Despite its ability to generate fully wettable surfaces at low temperatures and atmospheric pressure, PICVD coatings normally undergo hydrophobic recovery. This is a process by which a percentage of oxygenated functional group diffuse/re-arrange from the top layer of the deposited film towards the bulk of the substrate, taking the induced hydrophilic property of the material with them. Thus, hydrophilicity decreases over time. To address this, a vertical chemical gradient (VCG) can be deposited onto the CNT-substrate. The VCG consists of a first, thicker highly cross-linked layer followed by a second, thinner highly functionalized layer. In this article, we show, through water contact angle and XPS measurements, that the increased cross-linking density of the first layer can reduce the mobility of polar functional groups, forcing them to remain at the topmost layer of the PICVD coating and to suppress hydrophobic recovery. We show that employing a bi-layer VCG suppresses hydrophobic recovery for five days and reduces its effect afterwards (contact angle stabilizes to 42 ± 1° instead of 125 ± 3°).


RSC Advances ◽  
2017 ◽  
Vol 7 (47) ◽  
pp. 29275-29283 ◽  
Author(s):  
Aoyun Zhuang ◽  
Ruijin Liao ◽  
Sebastian C. Dixon ◽  
Yao Lu ◽  
Sanjayan Sathasivam ◽  
...  

Hierarchical micro/nano-structured transparent superhydrophobic polytetrafluoroethylene films with water contact angle 168°, water sliding angle <1° and visible transmittance >90% were prepared on glass via aerosol-assisted chemical vapor deposition.


2012 ◽  
Vol 441 ◽  
pp. 145-149 ◽  
Author(s):  
Feng Yu She ◽  
Dong Ming Qi ◽  
Zhi Jie Chen ◽  
Jian Zhong Shao ◽  
Lei Yang

A series of submicron organic pigment microcapsules with high pigment encapsulating efficiency and narrow particles size distribution was prepared via in-situ miniemulsion polymerization. The self-adhesive pigment microcapsules were applied to pigment printing of silk fabrics. It was found from printing qualities that, the K/S value, handle, dry and wet rubbing fastness of silk fabrics printed by pigment microcapsules were much better than those printed by traditional pigment paste. The TEM observation of the printed fabrics further indicated that the presence of adhesive polymeric layer on the pigment particles can remarkably improve the dispersion of pigment particles on fabric surface and the adhesion between pigment particles and the target fabric.


2016 ◽  
Vol 47 (1) ◽  
pp. 125-146 ◽  
Author(s):  
Mehmet Dasdemir ◽  
Hatice Ibili

This study focuses on the development of superhydrophobic and alcohol-repellent medical nonwoven fabrics via electrohydrodynamic atomization (electrospraying). It also compares the effectiveness of electrospraying with conventional pad-dry-cure finishing application. A commercial fluorochemical finishing agent was used to prepare fluorochemical solutions at varying concentrations (0.9–9 wt%). Electrospraying characteristics of these solutions were determined with characterizing their solution properties such as viscosity, conductivity and surface tension. After the successful applications of fluorochemical solutions on nonwoven fabrics via padding and electrospraying, wet pick-up ratios and weight gains of these fabrics were calculated. Also, water and alcohol repellencies of the coated fabrics were characterized with water contact angle and alcohol contact angle measurements. According to our findings, electrospraying application yielded less chemical consumption and higher water contact angle and alcohol contact angle results than padding. Increasing solution concentration and application time for electrospraying enhanced water contact angle values, which reached a maximum level (up to 156°) and afterwards remained almost constant depending on these variables. Thus, their limits to achieve superhydrophobic surfaces were able to be determined. Electrosprayed nonwovens were also shown to be alcohol-repellent against alcohol/water mixture of 70/30 (v/v%) whereas that was 30/70 (v/v%) for padded nonwovens. The investigation of the electrosprayed surfaces revealed a very less coating on the uppermost side of surface fibres which mostly led to the enhanced water and alcohol repellencies. One of the other important outcomes of this study is that there was no significant change on the comfort properties of nonwoven fabrics after the electrospraying application.


2019 ◽  
Author(s):  
Alessandro Silvestri ◽  
Evren Ataman ◽  
Akin Budi ◽  
Susan Stipp ◽  
Julian D Gale ◽  
...  

<p>Assessment of the risks and environmental impacts of carbon geosequestration requires knowledge about the wetting behavior of mineral surfaces in the presence of CO<sub>2</sub> and the pore fluids. In this context, the interfacial tension (IFT) between CO<sub>2</sub> and the aqueous fluid and the contact angle, theta, with the pore mineral surfaces are the two key parameters that control the capillary pressure in the pores of the candidate host rock. Knowledge of these two parameters and their dependence on the local conditions of pressure, temperature and salinity is essential for the correct prediction of structural and residual trapping. We have performed classical molecular dynamics simulations to predict the CO<sub>2</sub>–water IFT and the CO<sub>2</sub>–water–calcite contact angle. The IFT results are consistent with previous simulations, where simple point charge water models have been shown to underestimate the water surface tension, thus affecting the simulated IFT values. When combined with the EPM2 CO<sub>2</sub> model, the SPC/Fw water model indeed underestimates the IFT in the low pressure region at all temperatures studied. On the other hand, at high pressure and low temperature, the IFT is overestimated by ~5 mN/m. Literature data regarding the water contact angle on calcite are contradictory. Using our new set of force field parameters, we performed NVT simulations at 323 K and 20 MPa to calculate the contact angle of a water droplet on the calcite {10.4} surface in a CO<sub>2</sub> atmosphere. We performed simulations for both spherical and cylindrical droplet configurations for different initial radii, to study the size dependence of the water contact angle on calcite in the presence of CO<sub>2</sub>. Our results suggest that the contact angle of a cylindrical water droplet on calcite {10.4}, in the presence of CO<sub>2</sub>, is independent of droplet size, for droplets with a radius of 50 Å or more. On the contrary, spherical droplets make a contact angle that is strongly influenced by their size. At the largest size explored in this study, both spherical and cylindrical droplets converge to the same contact angle, 38 degrees, indicating that calcite is strongly wetted by water.</p>


Author(s):  
Mahdi Hasanzadeh ◽  
Hossein Shahriyari Far ◽  
Aminoddin Haji ◽  
Giuseppe Rosace

This work attempted to fabricate superhydrophobic fabric via simple immersion technique. Textile fabrics were coated with silica nanoparticles prepared from tetraethoxysilane (TEOS) to obtain sufficient roughness with hydrophobic surface chemistry. Then the coated fabrics were treated with polydimethylsiloxane (PDMS) and aminopropyltriethoxysilane (APTES) to reduce the surface energy. The effects of PDMS concentration on the surface morphology and superhydrophobicity of as-prepared fabric were investigated. The morphology and the composition of superhydrophobic fabric was characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDS) and Fourier transform infrared (FTIR) spectroscopy. The results revealed the formation of spherical silica nanoparticles with average particle size of 250 nm throughout the fabric surface. The possible interactions between silica nanoparticles and APTES, as well as the fabrics were elucidated. Investigating the hydrophobicity of fabrics via water contact angle (WCA) measurement showed that the treated fabric exhibits excellent water repellency with a water contact angle as high as 151&deg; and a very low water sliding angle. It also found that the treated fabric maintained most of its hydrophobicity against repeated washing. The comfort properties of the obtained superhydrophobic fabrics in term of air permeability and bending length did not reveal any significant changes.


Sign in / Sign up

Export Citation Format

Share Document