COLUMN BUCKLING TESTS OF 420 MPA HIGH STRENGTH STEEL SINGLE EQUAL ANGLES

2013 ◽  
Vol 13 (02) ◽  
pp. 1250069 ◽  
Author(s):  
H. Y. BAN ◽  
G. SHI ◽  
Y. J. SHI ◽  
Y. Q. WANG

This paper presents the results of the experimental studies conducted on the buckling behavior of 420 MPa high strength steel, hot-rolled, equal angle columns, numbering a total of 66 specimens with a wide range of column slenderness and section sizes. Based on the test results, the buckling modes and capacities were analyzed and the nondimensional buckling strengths were obtained and compared with the design strength predicted from Eurocode 3, ANSI/AISC 360-10 and Chinese standards GB50017-2003. The experimental results in previous studies were also employed in the comparison. The effect of width to thickness ratio of legs of an angle on buckling modes and strengths were investigated. It was found that the buckling strengths from test results were much higher than the corresponding design values and current design approaches were too conservative. Based on present and previous experimental results, a new design approach is suggested for the design of angle columns with 420 MPa high strength steel.

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


Author(s):  
Junkui Mao ◽  
Wen Guo ◽  
Zhenxiong Liu ◽  
Jun Zeng

Experiments were carried out to investigate the cooling effectiveness of a lamellar double-decker impingement/effusion structure. Infrared radiation (I.R.) thermal camera was used to measure the temperature on the outside surface of the lamellar double-decker. Experimental results were obtained for a wide range of governing parameters (blowing rate M (0.0017∼0.0066), the ratio of the jet impingement distance to the diameter of film hole H/D (0.5∼1.25), the ratio of the distance between the jet hole and film hole to the diameter of the film hole P/D (0, 3, 4), and the material of double-decker (Steel and Copper)). It was observed that the local cooling effectiveness η varies with all these parameters in a complicated way. All the results show that higher cooling effectiveness η is achieved in larger blowing rate cases. A certain range of H/D and P/D can be designed to result in the maximum cooling effectiveness η. And η is less sensitive to the material type compared with those parameters such as H/D, M and P/D.


2011 ◽  
Vol 243-249 ◽  
pp. 258-262
Author(s):  
Jun Chen ◽  
Jia Lv ◽  
Qi Lin Zhang ◽  
Zhi Xiong Tao ◽  
Jun Chen

Laminated glass has been increasing widely used in high rise buildings as a kind of safety glass in recent years. So we should analyze its material property. In this paper, we use flexural experiments and ANSYS program to analyze the main factors that affect the flexural capacity of the laminated glass. The test results show that the flexural capacity is closely related to film. And the ANSYS program had got good agreement with the experimental results. Comparison of experimental results with calculated ones indicates that the current design code will lead to conservative results and the equivalent thickness of laminated glasses provided in the code should be further discussed.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6860
Author(s):  
Jun Wang ◽  
Yuxin Duan ◽  
Yifan Wang ◽  
Xinran Wang ◽  
Qi Liu

To investigate the applicability of the methods for calculating the bearing capacity of high-strength steel-reinforced concrete (SRC) composite columns according to specifications and the effect of confinement of stirrups and steel on the bearing capacity of SRC columns. The axial compression tests were conducted on 10 high-strength SRC columns and 4 ordinary SRC columns. The influences of the steel strength grade, the steel ratio, the types of stirrups and slenderness ratio on the bearing capacity of such members were examined. The analysis results indicate that using high-strength steel and improving the steel ratio can significantly enhance the bearing capacity of the SRC columns. When the slenderness ratio increases dramatically, the bearing capacity of the SRC columns plummets. As the confinement effect of the stirrups on the concrete improves, the utilization ratio of the high-strength steel in the SRC columns increases. Furthermore, the results calculated by AISC360-19(U.S.), EN1994-1-1-2004 (Europe), and JGJ138-2016(China) are too conservative compared with test results. Finally, a modified formula for calculating the bearing capacity of the SRC columns is proposed based on the confinement effect of the stirrups and steel on concrete. The results calculated by the modified formula and the finite element modeling results based on the confinement effect agree well with the test results.


Author(s):  
Jumari A. Robinson ◽  
Adrian Brügger ◽  
Raimondo Betti

<p>The performance of suspension bridges exposed to fire hazards is severely under-studied – so much so that no experimental data exists to quantify the safety of a suspension bridge during or after a major fire event. Bridge performance and safety rely on the integrity of the main cable and its constituent high-strength steel wires. Due to the current lack of experimental high temperature data for wires, the theoretical models use properties and coefficients from data for other types of structural steel. No other structural steel undergoes the amount of cold-working that bridge wire does, and plastic strains from cold-working can be relieved at high temperature, drastically weakening the steel. As such, this work determines the elastic modulus, ultimate strength, and general thermo-mechanical profile of the high-strength steel wires in a range of elevated temperature environments. Specifically, these tests are conducted on a bundle of 61-wires (transient), and at the single wire level (steady-state) at a temperature range of approximately 20-700°C. The test results show an alarmingly high reduction in the elastic modulus and ultimate strength with increased temperature. The degradation shown by experiments is higher than predicted by current theoretical models, indicating that use of high-temperature properties of other types of steel is not sufficient. The test results also show scaling agreement between the single wire and the 61-wire bundle, implying that a full material work up at the single- wire level will accurately inform the failure characterization of the full cable.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Shao-Hsien Chen ◽  
Chung-An Yu

In recent years, most of nickel-based materials have been used in aircraft engines. Nickel-based materials applied in the aerospace industry are used in a wide range of applications because of their strength and rigidity at high temperature. However, the high temperatures and high strength caused by the nickel-based materials during cutting also reduce the tool lifetime. This research aims to investigate the tool wear and the surface roughness of Waspaloy during cutting with various cutting speeds, feed per tooth, cutting depth, and other cutting parameters. Then, it derives the formula for the tool lifetime based on the experimental results and explores the impacts of these cutting parameters on the cutting of Waspaloy. Since the impacts of cutting speed on the cutting of Waspaloy are most significant in accordance with the experimental results, the high-speed cutting is not recommended. In addition, the actual surface roughness of Waspaloy is worse than the theoretical surface roughness in case of more tool wear. Finally, a set of mathematical models can be established based on these results, in order to predict the surface roughness of Waspaloy cut with a worn tool. The errors between the predictive values and the actual values are 5.122%∼8.646%. If the surface roughness is within the tolerance, the model can be used to predict the residual tool lifetime before the tool is damaged completely. The errors between the predictive values and the actual values are 8.014%∼20.479%.


2019 ◽  
Vol 300 ◽  
pp. 16004
Author(s):  
Luis Pallarés-Santasmartas ◽  
Joseba Albizuri ◽  
Nelson Leguinagoicoa ◽  
Nicolas Saintier ◽  
Jonathan Merzeau

The present study consists of a theoretical, experimental and fractographic investigation of the effect of superimposed static axial and shear stresses on the high cycle fatigue behavior of a 34CrNiMo6 high strength steel in quenched and tempered condition (UTS = 1210 MPa), commonly employed in highly stressed mechanical components. The Haigh diagrams for the axial and torsional cases under different values of mean stress were obtained. In both cases, experimental results showed that increasing the mean stress gradually reduces the stress amplitude that the material can withstand without failure. The results of the present tests are compared with the theoretical predictions from Findley, based on the maximum damage critical plane; and the methods of Marin and Froustey, which are energetic based criterions. Froustey’s method shows the best agreement with experimental results for torsional fatigue with mean shear stresses, showing a non-conservative behaviour for the axial fatigue loading case. Macro-analyses and micro-analyses of specimen fracture appearance were conducted in order to obtain the fracture characteristics for different mean shear stress values under torsion fatigue loading.


2015 ◽  
Vol 764-765 ◽  
pp. 127-131
Author(s):  
Yang Yang ◽  
Kang Min Lee ◽  
Keun Yeong Oh ◽  
Sung Bin Hong

The current local stability criteria (KBC2009, AISC2010) are enacted through theoretical and experimental studies of ordinary steels, but the mechanical properties of high strength steels are different from ordinary steels. The high strength steel in the applicability of design criteria should be needed to review because of increasing market demanding for high strength steel in the high-rise and long span buildings. In this study, stub columns of H-shaped and box section with various steel grades subjected to concentric loading were investigated, and these steels were checked to the applicability of current local stability criteria. The difference between the ordinary steel and high strength steel was compared. As a result of comparison with various steel grades, most specimens were satisfied with the design criteria, but some specimens with lower tensile strength were not reached the required strength. It is considered that the uncertainty of material was the higher when the tensile strength of material was the lower.


Sign in / Sign up

Export Citation Format

Share Document