EFFECT OF MULTI-WALLED CARBON NANOTUBES ON VIABILITY AND SUPEROXIDE DISMUTASE EXPRESSION IN HUMAN WOUND PATHOGENS

2009 ◽  
Vol 08 (04n05) ◽  
pp. 415-423
Author(s):  
SANJAI SAXENA ◽  
CHARU GOMBER ◽  
K. K. RAINA

Recently, a wide variety of bionanocomposites and biocomposites are being developed to be used as extracellular matrix for chronic wound healing. Majority of the chronic wound situations arise due to infections caused by drug-resistant microbes like Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In particular S. aureus has become refractory to the current armamentarium of antimicrobial drugs. Therefore, it is imperative while designing nanobiocomposites for use as extracellular matrices to profile their antimicrobial activity. MWNT (multi-wall carbon nanotube) has been exploited previously in designing biocompatible nanocomposite for medical applications. Keeping in view, we studied the antimicrobial effect of MWNT on human clinical burn/wound pathogens, which were Methicillin-resistant Staphylococci and one Vancomycin intermediate Staphylococcus isolate. We also studied E. coli NCTC 10418 and Pseudomonas aeruginosa NCTC 10662, two surrogate gram negative microbes to understand their behavior in the presence of MWNT. Apart from reduction in viable counts of the test panel, organism's extracellular expression of the enzyme Superoxide dismutase (SOD) was also taken into account as this is the probable mechanism adopted by bacteria in general to survive and sustain under nutritional and other stress situation including pathogenesis. The present study indicated that all Staphylococcal isolates were susceptible to MWNT which reduced the bacterial count between 3–9 logs barring Sau G19 which only exhibited 1 log reduction. Sau G17, Sau G18, and Sau G19 expressed a higher SOD activity, Sau G9 exhibited a lower SOD expression and in Sau G16, the SOD expression was nearly the same as compared to control. Thus, from this study, it could be inferred that MWNT, apart from being antimicrobial, induces oxidative stress on S. aureus.

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Christoph Zutz ◽  
Dragana Bandian ◽  
Bernhard Neumayer ◽  
Franz Speringer ◽  
Markus Gorfer ◽  
...  

For decades, fungi have been the main source for the discovery of novel antimicrobial drugs. Recent sequencing efforts revealed a still high number of so far unknown “cryptic” secondary metabolites. The production of these metabolites is presumably epigenetically silenced under standard laboratory conditions. In this study, we investigated the effect of six small mass chemicals, of which some are known to act as epigenetic modulators, on the production of antimicrobial compounds in 54 spore forming fungi. The antimicrobial effect of fungal samples was tested against clinically facultative pathogens and multiresistant clinical isolates. In total, 30 samples of treated fungi belonging to six different genera reduced significantly growth of different test organisms compared to the untreated fungal sample (growth log reduction 0.3–4.3). For instance, the pellet ofPenicillium restrictumgrown in the presence of butyrate revealed significant higher antimicrobial activity againstStaphylococcus(S.)aureusand multiresistantS. aureusstrains and displayed no cytotoxicity against human cells, thus making it an ideal candidate for antimicrobial compound discovery. Our study shows that every presumable fungus, even well described fungi, has the potential to produce novel antimicrobial compounds and that our approach is capable of rapidly filling the pipeline for yet undiscovered antimicrobial substances.


2019 ◽  
Vol 20 (14) ◽  
pp. 1203-1212
Author(s):  
Abdelmonaem Messaoudi ◽  
Manel Zoghlami ◽  
Zarrin Basharat ◽  
Najla Sadfi-Zouaoui

Background & Objective: Pseudomonas aeruginosa shows resistance to a large number of antibiotics, including carbapenems and third generation cephalosporin. According to the World Health Organization global report published in February 2017, Pseudomonas aeruginosa is on the priority list among resistant bacteria, for which new antibiotics are urgently needed. Peptidoglycan serves as a good target for the discovery of novel antimicrobial drugs. Methods: Biosynthesis of peptidoglycan is a multi-step process involving four mur enzymes. Among these enzymes, UDP-N-acetylmuramate-L-alanine ligase (MurC) is considered to be an excellent target for the design of new classes of antimicrobial inhibitors in gram-negative bacteria. Results: In this study, a homology model of Pseudomonas aeruginosa MurC ligase was generated and used for virtual screening of chemical compounds from the ZINC Database. The best screened inhibitor i.e. N, N-dimethyl-2-oxo-2,3-dihydro-1H-1,3-benzodiazole-5-sulfonamide was then validated experimentally through inhibition assay. Conclusion: The presented results based on combined computational and in vitro analysis open up new horizons for the development of novel antimicrobials against this pathogen.


Author(s):  
Kiptiyah Kiptiyah ◽  
Widodo Widodo ◽  
Gatot Ciptadi ◽  
Aulanni’am Aulanni’Am ◽  
Mohammad A. Widodo ◽  
...  

AbstractBackgroundWe investigated whether 10-gingerol is able to induce oxidative stress in cumulus cells.MethodsFor the in-vitro research, we used a cumulus cell culture in M199, containing 10-gingerol in various concentrations (0, 12, 16, and 20 µM), and detected oxidative stress through superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentrations, with incubation periods of 24, 48, 72, and 96 h. The obtained results were confirmed by in-silico studies.ResultsThe in-vitro data revealed that SOD activity and MDA concentration increased with increasing incubation periods: SOD activity at 0 µM (1.39 ± 0.24i), 12 µM (16.42 ± 0.35ab), 16 µM (17.28 ± 0.55ab), 20 µM (17.81 ± 0.12a), with a contribution of 71.1%. MDA concentration at 0 µM (17.82 ± 1.39 l), 12 µM (72.99 ± 0.31c), 16 µM (79.77 ± 4.19b), 20 µM (85.07 ± 2.57a), with a contribution of 73.1%. Based on this, the in-silico data uncovered that 10˗gingerol induces oxidative stress in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.Conclusions10-gingerol induces oxidative stress in cumulus cells through enhancing SOD activity and MDA concentration by inhibiting HTR1A functions and inactivating GSK3B and AKT˗1.


2010 ◽  
Vol 298 (2) ◽  
pp. F401-F407 ◽  
Author(s):  
Md. Abdul Hye Khan ◽  
Mohammed Toriqul Islam ◽  
Alexander Castillo ◽  
Dewan Syed Abdul Majid

To examine the functional interaction between superoxide dismutase (SOD) and NADPH oxidase activity, we assessed renal responses to acute intra-arterial infusion of ANG II (0.5 ng·kg−1·min−1) before and during administration of a SOD inhibitor, diethyldithiocarbamate (DETC, 0.5 mg·kg−1·min−1), in enalaprilat-pretreated (33 μg·kg−1·min−1) rats ( n = 11). Total (RBF) and regional (cortical, CBF; medullary; MBF) renal blood flows were determined by Transonic and laser-Doppler flowmetry, respectively. Renal cortical and medullary tissue NADPH oxidase activity in vitro was determined using the lucigenin-chemiluminescence method. DETC treatment alone resulted in decreases in RBF, CBF, MBF, glomerular filtration rate (GFR), urine flow (V), and sodium excretion (UNaV) as reported previously. Before DETC, ANG II infusion decreased RBF (−18 ± 3%), CBF (−16 ± 3%), MBF [−5 ± 6%; P = not significant (NS)], GFR (−31 ± 4%), V (−34 ± 2%), and UNaV (−53 ± 3%). During DETC infusion, ANG II also caused similar reductions in RBF (−20 ± 4%), CBF (−19 ± 3%), MBF (−2 ± 2; P = NS), and in GFR (−22 ± 7%), whereas renal excretory responses (V; −12 ± 2%; UNaV; −24 ± 4%) were significantly attenuated compared with those before DETC. In in vitro experiments, ANG II (100 μM) enhanced NADPH oxidase activity both in cortical [13,194 ± 1,651 vs. 20,914 ± 2,769 relative light units (RLU)/mg protein] and in medullary (21,296 ± 2,244 vs. 30,597 ± 4,250 RLU/mg protein) tissue. Application of DETC (1 mM) reduced the basal levels and prevented ANG II-induced increases in NADPH oxidase activity in both tissues. These results demonstrate that renal excretory responses to acute ANG II administration are attenuated during SOD inhibition, which seems related to a downregulation of NADPH oxidase in the deficient condition of SOD activity.


Cephalalgia ◽  
1994 ◽  
Vol 14 (3) ◽  
pp. 215-218 ◽  
Author(s):  
T Shimomura ◽  
H Kowa ◽  
T Nakano ◽  
A Kitano ◽  
H Marukawa ◽  
...  

Superoxide dismutase (SOD) is a radical-scavenging enzyme. We determined Cu, Zn-SOD concentrations and activities in platelets from subjects with migraine and tension-type headaches. Thirty migraine without aura (MWoA) patients, 9 migraine with aura (MWA) patients, and 53 tension-type headache patients were selected for study. Thirty healthy volunteers composed the control group. Concentrations of platelet SOD were determined using enzyme-linked immunosorbent assay techniques. The activity of platelet SOD was determined by measuring reductivity of nitroblue tetrazolium. Low concentrations of platelet SOD were found in patients with MWA and MWoA. Platelet SOD activity decreased in MWA patients but not in patients with MWoA or tension-type headaches. These findings suggest vulnerability to oxidative stress in patients with migraine. It is suggested that low platelet SOD levels may play an important role in the etiology of migraine.


2017 ◽  
Vol 45 (08) ◽  
pp. 1613-1629 ◽  
Author(s):  
Yan-Jiao Xu ◽  
Zao-Qin Yu ◽  
Cheng-Liang Zhang ◽  
Xi-Ping Li ◽  
Cheng-Yang Feng ◽  
...  

The present study was designed to assess the effects and potential mechanisms of ginsenosides on 17[Formula: see text]-ethynyelstradiol (EE)-induced intrahepatic cholestasis (IC). Ginsenoside at doses of 30, 100, 300[Formula: see text]mg/kg body weight was intragastrically (i.g.) given to rats for 5 days to examine the effect on EE-induced IC. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bile acid (TBA) were measured. Hepatic malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were determined. Protein expression of proinflammatory cytokines TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] was analyzed by immunohistochemistry and Western blot. Results indicated that ginsenosides remarkably prevented EE-induced increase in the serum levels of AST, ALT, ALP and TBA. Moreover, the elevation of hepatic MDA content induced by EE was significantly reduced, while hepatic SOD activities were significantly increased when treated with ginsenosides. Histopathology of the liver tissue showed that pathological injuries were relieved after treatment with ginsenosides. In addition, treatment with ginsenosides could significantly downregulate the protein expression of TNF-[Formula: see text], IL-6 and IL-1[Formula: see text] compared with EE group. These findings indicate that ginsenosides exert the hepatoprotective effect on EE-induced intrahepatic cholestasis in rats, and this protection might be attributed to the attenuation of oxidative stress and inflammation.


2021 ◽  
Vol 30 (1) ◽  
pp. 19-28
Author(s):  
Yasser M. Ismail ◽  
Sahar M. Fayed ◽  
Fatma M. Elesawy ◽  
Nora Z Abd El-Halim ◽  
Ola S. El-Shimi

Background: The biggest concern for a burn team is a nosocomial infection in burn patients, which is a significant health issue. Pseudomonas aeruginosa is an extremely troublesome drug-resistant bacterium in the world today. We are now faced with rising P. aeruginosa pan-drug-resistant clones in hospital settings. Objectives: To evaluate the distribution of different virulence factors generated by P. aeruginosa isolated from burn wound infections, together with its antimicrobial susceptibility. Methodology: The isolates reported as P. aeruginosa were further tested for the presence of various phenotypic and genotypic virulence factors including (Biofilm formation, lipase, protease, gelatinase, DNase, bile esculin hydrolysis & hemolysin). Also, genes encoding (nan 1 and Exo A) were investigated by PCR using specific primers. All the isolates were tested for their antimicrobial susceptibility patterns. Results: The study reported that toxins and enzymes were expressed by the tested strains in varying proportions; (92.0%) were producing β-hemolysin, lipase (86%), and protease (86%). The formation of biofilm was observed in 84%. Exo A (70%) was the main virulence gene found in the tested strains. Nan 1 gene was identified in 30% of the samples. 82% of MDRPA isolates were found. There is indeed a relationship between biofilm production and drug resistance, as well as the presence of virulence genes (nan 1 and Exo A) were associated with certain patients and burn wounds characteristics as burn size, burn wound depth, length of hospital stays, and socioeconomic status. Conclusions: Correlation of Pseudomonas aeruginosa virulence profiles with burn wounds and patient-related data can be useful in establishing of an appropriate preventive protocol for hospitalized patients with P. aeruginosa burn serious infections. The targeting of these bacterial virulence arsenals is also a promising approach to developing alternative drugs, which act by attenuating the aggressiveness of the pathogen and reducing its potential to cause vigorous infection.


Author(s):  
Bakhtyar Tartibian ◽  
Behzad Hajizadeh ◽  
Asghar Abbasi ◽  
Mehdi Eghbali ◽  
Siamak Asri-Rezaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document