COMPARATIVE STUDY OF DIFFERENT MICRO-THERMAL ACTUATORS FOR MICRO-ELECTRO-MECHANICAL-SYSTEM APPLICATION

2012 ◽  
Vol 11 (01) ◽  
pp. 17-26
Author(s):  
P. K. PATOWARI ◽  
M. M. NATH ◽  
A. S. BHARALI ◽  
J. GOGOI ◽  
C. K. SINGH

This paper presents a comparative study of three micro-thermal actuators, which differ in their construction and material being used. Model-I is the basic model and Model-II and Model-III are developed with a view to achieve improved performance over Model-I. The main objective of this analysis is to achieve greater deflection from the considered actuator models under a range of applied voltages. Apart from deflection analysis, analyses for temperature distribution and stress developed in the actuator models are also carried out for feasibility study. The materials under consideration are poly-silicon, single crystal silicon, and titanium. The software used for modeling and simulation is Comsol Multiphysics.

2000 ◽  
Author(s):  
John M. Maloney ◽  
Don L. DeVoe ◽  
David S. Schreiber

Abstract Thermal actuators that deflect laterally by resistive heating have been fabricated in single crystal silicon (SCS) by deep reactive ion etching (DRIE). With heights of 50 μm, these high-aspect actuators produce significantly larger forces than similar polysilicon devices. Problems with stiction are also avoided through the use of silicon-on-insulator (SOI) technology. An analytical model is applied to U-beam and V-beam actuator shapes fabricated on SOI wafers. The electrothermal component of the analysis uses an axial conduction model to predict temperature distribution; the thermomechanical component employs elastic beam theory to calculate deflection due to thermal strain. Experimental results are compared to analytical predictions. Deflections of 29 μm for a 1200 μm long, 12 μm wide V-beam actuator were observed, corresponding to a predicted force of 7.6 mN.


1995 ◽  
Vol 405 ◽  
Author(s):  
Z. T. Kuznicki

AbstractA multi-interface solar cell design exploiting the parts of solar spectrum heretofore never converted by single-crystal silicon devices seems to be possible with local material modifications combined with a superimposition of hetero-interface transition zones. Possible structural modifications by implantation of a silicon single-crystal target causes a series of “secondary” effects of basic importance from the photovoltaic conversion point of view. The 1800 nm divacancy infrared band activity has revealed totally unknown behavior in the built-in strain field of the inserted α-Si/c-Si hetero-interface. First, even an annealing temperature of 770 K is not enough to quench the divacancy absorption. Next, the elimination of useful band-tail and useless divacancy activities is not coincident, i.e. divacancy absorption can be quenched without too much reduction of the band-tail activity. A relatively important infrared current could be observed experimentally up to 2500 nm and by extrapolation up to about 3500 nm.


2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Muhammad Ali Shah ◽  
Ibrar Ali Shah ◽  
Duck-Gyu Lee ◽  
Shin Hur

This paper reports a review about microelectromechanical system (MEMS) microphones. The focus of this review is to identify the issues in MEMS microphone designs and thoroughly discuss the state-of-the-art solutions that have been presented by the researchers to improve performance. Considerable research work has been carried out in capacitive MEMS microphones, and this field has attracted the research community because these designs have high sensitivity, flat frequency response, and low noise level. A detailed overview of the omnidirectional microphones used in the applications of an audio frequency range has been presented. Since the microphone membrane is made of a thin film, it has residual stress that degrades the microphone performance. An in-depth detailed review of research articles containing solutions to relieve these stresses has been presented. The comparative analysis of fabrication processes of single- and dual-chip omnidirectional microphones, in which the membranes are made up of single-crystal silicon, polysilicon, and silicon nitride, has been done, and articles containing the improved performance in these two fabrication processes have been explained. This review will serve as a starting guide for new researchers in the field of capacitive MEMS microphones.


Author(s):  
М.У. Каланов ◽  
А.В. Хугаев

Thermal oxidation of a silicon single crystal in the temperature range of 293 – 1293 K was studied using high – temperature X – ray diffraction directly on the beam. An anomaly in the intensity and angular position of diffuse scattering from the surface of the single crystal was found. The anomaly is explained by the oxidation of the silicon surface according to the Dill Grove model, including the process of thermal oxidation and sublimation of the oxide layer depending on temperature. It was found that in the bulk of a single crystal (silicon medium) in this temperature range, there is a - b phase transition in the crystalline phase of silicon dioxide, similar to the a - b transition of quartz in the atmosphere.


Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document