scholarly journals Design Approaches of MEMS Microphones for Enhanced Performance

2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Muhammad Ali Shah ◽  
Ibrar Ali Shah ◽  
Duck-Gyu Lee ◽  
Shin Hur

This paper reports a review about microelectromechanical system (MEMS) microphones. The focus of this review is to identify the issues in MEMS microphone designs and thoroughly discuss the state-of-the-art solutions that have been presented by the researchers to improve performance. Considerable research work has been carried out in capacitive MEMS microphones, and this field has attracted the research community because these designs have high sensitivity, flat frequency response, and low noise level. A detailed overview of the omnidirectional microphones used in the applications of an audio frequency range has been presented. Since the microphone membrane is made of a thin film, it has residual stress that degrades the microphone performance. An in-depth detailed review of research articles containing solutions to relieve these stresses has been presented. The comparative analysis of fabrication processes of single- and dual-chip omnidirectional microphones, in which the membranes are made up of single-crystal silicon, polysilicon, and silicon nitride, has been done, and articles containing the improved performance in these two fabrication processes have been explained. This review will serve as a starting guide for new researchers in the field of capacitive MEMS microphones.

Author(s):  
Tran Anh Vang ◽  
Xianmin Zhang ◽  
Benliang Zhu

The sensitivity and linearity trade-off problem has become the hotly important issues in designing the piezoresistive pressure sensors. To solve these trade-off problems, this paper presents the design, optimization, fabrication, and experiment of a novel piezoresistive pressure sensor for micro pressure measurement based on a combined cross beam - membrane and peninsula (CBMP) structure diaphragm. Through using finite element method (FEM), the proposed sensor performances as well as comparisons with other sensor structures are simulated and analyzed. Compared with the cross beam-membrane (CBM) structure, the sensitivity of CBMP structure sensor is increased about 38.7 % and nonlinearity error is reduced nearly 8%. In comparison with the peninsula structure, the maximum non-linearity error of CBMP sensor is decreased about 40% and the maximum deflection is extremely reduced 73%. Besides, the proposed sensor fabrication is performed on the n-type single crystal silicon wafer. The experimental results of the fabricated sensor with CBMP membrane has a high sensitivity of 23.4 mV/kPa and a low non-linearity of −0.53% FSS in the pressure range 0–10 kPa at the room temperature. According to the excellent performance, the sensor can be applied to measure micro-pressure lower than 10 kPa.


2012 ◽  
Vol 11 (01) ◽  
pp. 17-26
Author(s):  
P. K. PATOWARI ◽  
M. M. NATH ◽  
A. S. BHARALI ◽  
J. GOGOI ◽  
C. K. SINGH

This paper presents a comparative study of three micro-thermal actuators, which differ in their construction and material being used. Model-I is the basic model and Model-II and Model-III are developed with a view to achieve improved performance over Model-I. The main objective of this analysis is to achieve greater deflection from the considered actuator models under a range of applied voltages. Apart from deflection analysis, analyses for temperature distribution and stress developed in the actuator models are also carried out for feasibility study. The materials under consideration are poly-silicon, single crystal silicon, and titanium. The software used for modeling and simulation is Comsol Multiphysics.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 602 ◽  
Author(s):  
Zakriya Mohammed ◽  
Ibrahim Elfadel ◽  
Mahmoud Rasras

With the continuous advancements in microelectromechanical systems (MEMS) fabrication technology, inertial sensors like accelerometers and gyroscopes can be designed and manufactured with smaller footprint and lower power consumption. In the literature, there are several reported accelerometer designs based on MEMS technology and utilizing various transductions like capacitive, piezoelectric, optical, thermal, among several others. In particular, capacitive accelerometers are the most popular and highly researched due to several advantages like high sensitivity, low noise, low temperature sensitivity, linearity, and small footprint. Accelerometers can be designed to sense acceleration in all the three directions (X, Y, and Z-axis). Single-axis accelerometers are the most common and are often integrated orthogonally and combined as multiple-degree-of-freedom (MDoF) packages for sensing acceleration in the three directions. This type of MDoF increases the overall device footprint and cost. It also causes calibration errors and may require expensive compensations. Another type of MDoF accelerometers is based on monolithic integration and is proving to be effective in solving the footprint and calibration problems. There are mainly two classes of such monolithic MDoF accelerometers, depending on the number of proof masses used. The first class uses multiple proof masses with the main advantage being zero calibration issues. The second class uses a single proof mass, which results in compact device with a reduced noise floor. The latter class, however, suffers from high cross-axis sensitivity. It also requires very innovative layout designs, owing to the complicated mechanical structures and electrical contact placement. The performance complications due to nonlinearity, post fabrication process, and readout electronics affects both classes of accelerometers. In order to effectively compare them, we have used metrics such as sensitivity per unit area and noise-area product. This paper is devoted to an in-depth review of monolithic multi-axis capacitive MEMS accelerometers, including a detailed analysis of recent advancements aimed at solving their problems such as size, noise floor, cross-axis sensitivity, and process aware modeling.


Author(s):  
M. H. Rhee ◽  
W. A. Coghlan

Silicon is believed to be an almost perfectly brittle material with cleavage occurring on {111} planes. In such a material at room temperature cleavage is expected to occur prior to any dislocation nucleation. This behavior suggests that cleavage fracture may be used to produce usable flat surfaces. Attempts to show this have failed. Such fractures produced in semiconductor silicon tend to occur on planes of variable orientation resulting in surfaces with a poor surface finish. In order to learn more about the mechanisms involved in fracture of silicon we began a HREM study of hardness indent induced fractures in thin samples of oxidized silicon.Samples of single crystal silicon were oxidized in air for 100 hours at 1000°C. Two pieces of this material were glued together and 500 μm thick cross-section samples were cut from the combined piece. The cross-section samples were indented using a Vicker's microhardness tester to produce cracks. The cracks in the samples were preserved by thinning from the back side using a combination of mechanical grinding and ion milling.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Author(s):  
Philip D. Hren

The pattern of bend contours which appear in the TEM image of a bent or curled sample indicates the shape into which the specimen is bent. Several authors have characterized the shape of their bent foils by this method, most recently I. Bolotov, as well as G. Möllenstedt and O. Rang in the early 1950’s. However, the samples they considered were viewed at orientations away from a zone axis, or at zone axes of low symmetry, so that dynamical interactions between the bend contours did not occur. Their calculations were thus based on purely geometric arguments. In this paper bend contours are used to measure deflections of a single-crystal silicon membrane at the (111) zone axis, where there are strong dynamical effects. Features in the bend contour pattern are identified and associated with a particular angle of bending of the membrane by reference to large-angle convergent-beam electron diffraction (LACBED) patterns.


Author(s):  
N. David Theodore ◽  
Leslie H. Allen ◽  
C. Barry Carter ◽  
James W. Mayer

Metal/polysilicon investigations contribute to an understanding of issues relevant to the stability of electrical contacts in semiconductor devices. These investigations also contribute to an understanding of Si lateral solid-phase epitactic growth. Metals such as Au, Al and Ag form eutectics with Si. reactions in these metal/polysilicon systems lead to the formation of large-grain silicon. Of these systems, the Al/polysilicon system has been most extensively studied. In this study, the behavior upon thermal annealing of Au/polysilicon bilayers is investigated using cross-section transmission electron microscopy (XTEM). The unique feature of this system is that silicon grain-growth occurs at particularly low temperatures ∽300°C).Gold/polysilicon bilayers were fabricated on thermally oxidized single-crystal silicon substrates. Lowpressure chemical vapor deposition (LPCVD) at 620°C was used to obtain 100 to 400 nm polysilicon films. The surface of the polysilicon was cleaned with a buffered hydrofluoric acid solution. Gold was then thermally evaporated onto the samples.


Sign in / Sign up

Export Citation Format

Share Document