INCREASING POWER BY USING HAPLOTYPE SIMILARITY IN A MULTIMARKER TRANSMISSION/DISEQUILIBRIUM TEST

2013 ◽  
Vol 11 (02) ◽  
pp. 1250014 ◽  
Author(s):  
MARÍA M. ABAD-GRAU ◽  
NURIA MEDINA-MEDINA ◽  
SERAFÍN MORAL ◽  
ROSANA MONTES-SOLDADO ◽  
SERGIO TORRES-SÁNCHEZ ◽  
...  

It is already known that power in multimarker transmission/disequilibrium tests may improve with the number of markers as some associations may require several markers to be captured. However, a mechanism such as haplotype grouping must be used to avoid incremental complexity with the number of markers. 2G, a state-of-the-art transmission/disequilibrium test, implements this mechanism to its maximum extent by grouping haplotypes into only two groups, high and low-risk haplotypes, so that the test has only one degree of freedom regardless of the number of markers. The test checks whether those haplotypes more often transmitted from parents to offspring are truly high-risk haplotypes. In this paper we use haplotype similarity as prior knowledge to classify haplotypes as high or low risk ones and start with those haplotypes in which the prior will have lower impact i.e. those with the largest differences between transmission and non-transmission counts. If their counts are very different, the prior knowledge has little effect and haplotypes are classified as low or high risk as 2G does. We show a substantial gain in power achieved by this approach, in both simulation and real data sets.

2005 ◽  
Vol 69 (4) ◽  
pp. 455-467 ◽  
Author(s):  
Kai Yu ◽  
Shuanglin Zhang ◽  
Ingrid Borecki ◽  
Aldi Kraja ◽  
Chengjie Xiong ◽  
...  

2020 ◽  
Author(s):  
Zihao Wang ◽  
Xuan Xiang ◽  
Xiaoshan Wei ◽  
Linlin Ye ◽  
Yiran Niu ◽  
...  

Abstract Background. Lung squamous cell carcinoma (LUSC) is one of the subtypes of non-small-cell lung cancer (NSCLC) and accounts for approximately 20 to 30% of all lung cancers.Methods. In this study, we developed an immune-related gene pair index (IRGPI) for early-stage LUSC from 3 public LUSC data sets, including The Cancer Genome Atlas LUSC cohort and Gene Expression Omnibus data sets, and explored whether IRGPI could act as a prognostic marker to identify patients with early-stage LUSC at high risk.Results. IRGPI was constructed by 68 gene pairs consisting of 123 unique immune-related genes from TCGA LUSC cohort. In the derivation cohort, the hazard of death among high-risk group was 10.51 times that of the low-risk group (HR, 10.51; 95%CI, 6.96-15.86; p<0.001). The hazard of death among the high-risk group was 2.26 times that of the low-risk group (HR, 2.26; 95%CI, 1.2-4.25; p=0.009) in the GSE37745 validation cohort and was 3.2 times that of low-risk group (HR, 3.2; 95%CI, 0.98-10.4; p=0.042) in the GSE41271 validation cohort. The infiltrations of CD8+ T cells and T follicular helper cells were lower in the high-risk group, as compared with the low-risk group in the TCGA cohort (6.94% vs 9.63%, p=0.004; 2.15% vs 3%, p=0.002, respectively). The infiltrations of neutrophils, activated mast cells and monocytes were higher in the high-risk group, as compared with the low-risk group in the TCGA cohort (1.63% vs 0.72%, p=0.001; 1.64% vs 1.02%, p=0.007; 0.57% vs 0.35%, p=0.041, respectively).Conclusions. IRGPI is a significant prognostic biomarker for predicting overall survival in early-stage LUSC patients.


2019 ◽  
Vol 9 (18) ◽  
pp. 3801 ◽  
Author(s):  
Hyuk-Yoon Kwon

In this paper, we propose a method to construct a lightweight key-value store based on the Windows native features. The main idea is providing a thin wrapper for the key-value store on top of a built-in storage in Windows, called Windows registry. First, we define a mapping of the components in the key-value store onto the components in the Windows registry. Then, we present a hash-based multi-level registry index so as to distribute the key-value data balanced and to efficiently access them. Third, we implement basic operations of the key-value store (i.e., Get, Put, and Delete) by manipulating the Windows registry using the Windows native APIs. We call the proposed key-value store WR-Store. Finally, we propose an efficient ETL (Extract-Transform-Load) method to migrate data stored in WR-Store into any other environments that support existing key-value stores. Because the performance of the Windows registry has not been studied much, we perform the empirical study to understand the characteristics of WR-Store, and then, tune the performance of WR-Store to find the best parameter setting. Through extensive experiments using synthetic and real data sets, we show that the performance of WR-Store is comparable to or even better than the state-of-the-art systems (i.e., RocksDB, BerkeleyDB, and LevelDB). Especially, we show the scalability of WR-Store. That is, WR-Store becomes much more efficient than the other key-value stores as the size of data set increases. In addition, we show that the performance of WR-Store is maintained even in the case of intensive registry workloads where 1000 processes accessing to the registry actively are concurrently running.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3092-3092 ◽  
Author(s):  
Rowan Kuiper ◽  
Martin van Vliet ◽  
Annemiek Broyl ◽  
Yvonne de Knegt ◽  
Bronno van der Holt ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is a heterogeneous disease with highly variable survival. Gene expression profiling (GEP) classifiers, such as the EMC-92, can consistently distinguish high risk patients from standard risk patients. Other prognostic factors for MM include the international staging system (ISS) and FISH. Here we present a comparison of prognostic factors and introduce a novel stratification based on EMC-92 and ISS. Methods Scores were calculated for the GEP classifiers EMC-92, UAMS-70, UAMS-17, UAMS-80 and MRC-IX-6 for the following five studies: HOVON-65/GMMG-HD4 (n=328; GSE19784), MRC-IX (n=247; GSE15695), UAMS-TT2 (n=345; GSE2658), UAMS-TT3 (n=238; E-TABM-1138 and GSE2658) and APEX (n=264; GSE9782; for details, see Kuiper R, et al. Leukemia (2012) 26: 2406–2413). FISH data were available for the HOVON-65/GMMG-HD4 trial and the MRC-IX trial. ISS values were available for all datasets except UAMS-TT2. Univariate associations between markers and overall survival (OS) were investigated in a Cox regression analysis, using Bonferroni multiple testing correction. For pair wise analysis of markers, the significance in the increase of partial likelihood was calculated. In order to find the strongest combination (defined as the highest partial likelihood) of GEP-ISS, we compared these pair-wise on the same data. Training sets of classifiers were excluded for those analyses in which that specific classifier was tested. All survival models have been stratified for study. The calculations were done in R using the package survival. Results Prognostic value of FISH, GEP and serum markers was determined in relation to overall survival (Figure 1). GEP classifiers generally performed much better than FISH markers. Of 6 FISH markers with known adverse risk, del(17p), t(4;14), t(14;20) and del(13q) demonstrated a significant association only in one of two data sets with available FISH (HOVON-65/GMMG-HD4). GEP classifiers, on the other hand, are much more robust. Classifiers EMC-92, UAMS-70 and UAMS-80 significantly identify a high-risk population in all evaluated data sets, whereas the UAMS-17 and the MRC-IX-6 classifiers predict high-risk patients in three of four datasets. As expected, ISS staging demonstrated stable and significant hazard ratios in most studies (three out of four). Indeed, when evaluating a merged data set, both ISS and all evaluated GEP classifiers are strong prognostic factors independent of each other. Markers with additive value to each other include all combinations of GEP classifiers as well as the combination of GEP classifiers together with ISS. Tested in independent sets, the EMC-92 classifier combined with ISS is the best combination, as compared to other classifier-ISS combinations tested on the same independent data sets. The strongest risk stratification in 3 groups was achieved by splitting the EMC-92 standard risk patients into low risk, based on ISS stage I, and intermediate risk, based on ISS stage II and III. This stratification retains the original EMC-92 high-risk group, and is robust in all cohorts. The proportions of patients defined as low, intermediate and high risk for this combined EMC-92-ISS classifier are 31% / 47% / 22 % (HOVON-65/GMMG-HD4), 19% / 61% / 20 % (MRC-IX), 46% / 39% / 15 % (UAMS-TT3) and 32% / 55% / 13 % (APEX). Variability in low risk proportion is caused by the variable incidence of ISS stage I. Conclusions We conclude that GEP is the strongest predictor for survival in multiple myeloma and far more robust than FISH. Adding ISS to EMC-92 results in the strongest combination of any of the GEP classifier-ISS combinations. Stratification in low risk, intermediate and high risk may result in improved treatment and ultimately in longer survival of MM patients. This research was supported by the Center for Translational Molecular Medicine (BioCHIP project) Disclosures: van Vliet: Skyline Diagnostics: Employment. Mulligan:Millennium Pharmaceuticals: Employment. Morgan:Celgene: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Millenium: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Merck: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees; Johnson and Johnson: Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees. Goldschmidt:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Lokhorst:Genmab A/S: Consultancy, Research Funding; Celgene: Honoraria; Johnson-Cilag: Honoraria; Mudipharma: Honoraria. van Beers:Skyline Diagnostics: Employment. Sonneveld:Janssen-Cilag: Honoraria; Celgene: Honoraria; Onyx: Honoraria; Janssen-Cilag: Research Funding; Millenium: Research Funding; Onyx: Research Funding; Celgene: Research Funding.


2010 ◽  
Vol 66 (7) ◽  
pp. 783-788 ◽  
Author(s):  
Pavol Skubák ◽  
Willem-Jan Waterreus ◽  
Navraj S. Pannu

Density modification is a standard technique in macromolecular crystallography that can significantly improve an initial electron-density map. To obtain optimal results, the initial and density-modified map are combined. Current methods assume that these two maps are independent and propagate the initial map information and its accuracy indirectly through previously determined coefficients. A multivariate equation has been derived that no longer assumes independence between the initial and density-modified map, considers the observed diffraction data directly and refines the errors that can occur in a single-wavelength anomalous diffraction experiment. The equation has been implemented and tested on over 100 real data sets. The results are dramatic: the method provides significantly improved maps over the current state of the art and leads to many more structures being built automatically.


2015 ◽  
Vol 24 (03) ◽  
pp. 1550003 ◽  
Author(s):  
Armin Daneshpazhouh ◽  
Ashkan Sami

The task of semi-supervised outlier detection is to find the instances that are exceptional from other data, using some labeled examples. In many applications such as fraud detection and intrusion detection, this issue becomes more important. Most existing techniques are unsupervised. On the other hand, semi-supervised approaches use both negative and positive instances to detect outliers. However, in many real world applications, very few positive labeled examples are available. This paper proposes an innovative approach to address this problem. The proposed method works as follows. First, some reliable negative instances are extracted by a kNN-based algorithm. Afterwards, fuzzy clustering using both negative and positive examples is utilized to detect outliers. Experimental results on real data sets demonstrate that the proposed approach outperforms the previous unsupervised state-of-the-art methods in detecting outliers.


2018 ◽  
Vol 10 (10) ◽  
pp. 1559
Author(s):  
Xin Tian ◽  
Mi Jiang ◽  
Ruya Xiao ◽  
Rakesh Malhotra

The adaptive Goldstein filter driven by InSAR coherence is one of the most famous frequency domain-based filters and has been widely used to improve the quality of InSAR measurement with different noise features. However, the filtering power is biased to varying degrees due to the biased coherence estimator and empirical modelling of the filtering power under a given coherence level. This leads to under- or over-estimation of phase noise over the entire dataset. Here, the authors present a method to correct filtering power on the basis of the second kind statistical coherence estimator. In contrast with regular statistics, the new estimator has smaller bias and variance values, and therefore provides more accurate coherence observations. In addition, a piece-wise function model determined from the Monte Carlo simulation is used to compensate for the nonlinear relationship between the filtering parameter and coherence. This method was tested on both synthetic and real data sets and the results were compared against those derived from other state-of-the-art filters. The better performance of the new filter for edge preservation and residue reduction demonstrates the value of this method.


2020 ◽  
Vol 34 (04) ◽  
pp. 6639-6647 ◽  
Author(s):  
Puyudi Yang ◽  
Jianbo Chen ◽  
Cho-Jui Hsieh ◽  
Jane-Ling Wang ◽  
Michael Jordan

Deep neural networks obtain state-of-the-art performance on a series of tasks. However, they are easily fooled by adding a small adversarial perturbation to the input. The perturbation is often imperceptible to humans on image data. We observe a significant difference in feature attributions between adversarially crafted examples and original examples. Based on this observation, we introduce a new framework to detect adversarial examples through thresholding a scale estimate of feature attribution scores. Furthermore, we extend our method to include multi-layer feature attributions in order to tackle attacks that have mixed confidence levels. As demonstrated in extensive experiments, our method achieves superior performances in distinguishing adversarial examples from popular attack methods on a variety of real data sets compared to state-of-the-art detection methods. In particular, our method is able to detect adversarial examples of mixed confidence levels, and transfer between different attacking methods. We also show that our method achieves competitive performance even when the attacker has complete access to the detector.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6807
Author(s):  
Yong Xie ◽  
Yili Guo ◽  
Sheng Yang ◽  
Jian Zhou ◽  
Xiaobai Chen

The introduction of various networks into automotive cyber-physical systems (ACPS) brings great challenges on security protection of ACPS functions, the auto industry recommends to adopt the hardware security module (HSM)-based multicore ECU to secure in-vehicle networks while meeting the delay constraint. However, this approach incurs significant hardware cost. Consequently, this paper aims to reduce security enhancing-related hardware cost by proposing two efficient design space exploration (DSE) algorithms, namely, stepwise decreasing-based heuristic algorithm (SDH) and interference balancing-based heuristic algorithm (IBH), which explore the task assignment, task scheduling, and message scheduling to minimize the number of required HSMs. Experiments on both synthetical and real data sets show that the proposed SDH and IBH are superior than state-of-the-art algorithm, and the advantage of SDH and IBH becomes more obvious as the increase about the percentage of security-critical tasks. For synthetic data sets, the hardware cost can be reduced by 61.4% and 45.6% averagely for IBH and SDH, respectively; for real data sets, the hardware cost can be reduced by 64.3% and 54.4% on average for IBH and SDH, respectively. Furthermore, IBH is better than SDH in most cases, and the runtime of IBH is two or three orders of magnitude smaller than SDH and state-of-the-art algorithm.


Author(s):  
Yi Fan ◽  
Nan Li ◽  
Chengqian Li ◽  
Zongjie Ma ◽  
Longin Jan Latecki ◽  
...  

The Maximum Vertex Weight Clique (MVWC) problem is NP-hard and also important in real-world applications. In this paper we propose to use the restart and the random walk strategies to improve local search for MVWC. If a solution is revisited in some particular situation, the search will restart. In addition, when the local search has no other options except dropping vertices, it will use random walk. Experimental results show that our solver outperforms state-of-the-art solvers in DIMACS and finds a new best-known solution. Also it is the unique solver which is comparable with state-of-the-art methods on both BHOSLIB and large crafted graphs. Furthermore we evaluated our solver in clustering aggregation. Experimental results on a number of real data sets demonstrate that our solver outperforms the state-of-the-art for solving the derived MVWC problem and helps improve the final clustering results.


Sign in / Sign up

Export Citation Format

Share Document