Motion of an integral curve of a Hamiltonian dynamical system and the evolution equations in 3D

2017 ◽  
Vol 14 (12) ◽  
pp. 1750172
Author(s):  
T. Bayrakdar ◽  
A. A. Ergin

We show that all of the nonstretching curve motions specified in the Frenet–Serret frame in the literature can be described by the time evolution of an integral curve of a Hamiltonian dynamical system such that the underlying curve is a geodesic curve on a leaf of the foliation determined by the Poisson structure in three dimensions. As an illustrative example, we show that the focusing version of the nonlinear Schrödinger equation and the complex modified Korteweg–de Vries (mKdV) equation are obtained in this way.

2018 ◽  
Vol 33 (14n15) ◽  
pp. 1850085
Author(s):  
Michael Gutperle ◽  
Yi Li

In this paper, we construct a map between a solution of supersymmetric Chern–Simons higher spin gravity based on the superalgebra [Formula: see text] with Lifshitz scaling and the [Formula: see text] super Boussinesq hierarchy. We show that under this map the time evolution equations of both theories coincide. In addition, we identify the Poisson structure of the Chern–Simons theory induced by gauge transformation with the second Hamiltonian structure of the super Boussinesq hierarchy.


2018 ◽  
Vol 73 (12) ◽  
pp. 1121-1128 ◽  
Author(s):  
A. Ankiewicz ◽  
U. Bandelow ◽  
N. Akhmediev

AbstractWe derive the new infinite Sasa–Satsuma hierarchy of evolution equations using an invariant densities approach. Being significantly simpler than the Lax-pair technique, this approach does not involve ponderous 3 × 3 matrices. Moreover, it allows us to explicitly obtain operators of many orders involved in the time evolution of the Sasa–Satsuma hierarchy functionals. All these operators are parts of a generalised Sasa–Satsuma equation of infinitely high order. They enter this equation with independent arbitrary real coefficients that govern the evolution pattern of this multiparameter dynamical system.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Author(s):  
Laxmikanta Mandi ◽  
Kaushik Roy ◽  
Prasanta Chatterjee

Analytical solitary wave solution of the dust ion acoustic waves (DIAWs) is studied in the frame-work of Korteweg-de Vries (KdV), damped force Korteweg-de Vries (DFKdV), damped force modified Korteweg-de Vries (DFMKdV) and damped forced Zakharov-Kuznetsov (DFZK) equations in an unmagnetized collisional dusty plasma consisting of negatively charged dust grain, positively charged ions, Maxwellian distributed electrons and neutral particles. Using reductive perturbation technique (RPT), the evolution equations are obtained for DIAWs.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


2020 ◽  
Vol 80 (9) ◽  
Author(s):  
Soumya Chakraborty ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

AbstractA cosmological model having matter field as (non) interacting dark energy (DE) and baryonic matter and minimally coupled to gravity is considered in the present work with flat FLRW space time. The DE is chosen in the form of a three-form field while radiation and dust (i.e; cold dark matter) are the baryonic part. The cosmic evolution is studied through dynamical system analysis of the autonomous system so formed from the evolution equations by suitable choice of the dimensionless variables. The stability of the non-hyperbolic critical points are examined by Center manifold theory and possible bifurcation scenarios have been examined.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


Sign in / Sign up

Export Citation Format

Share Document