SELF-OSCILLATIONS OF HYDROGELS DRIVEN BY CHEMICAL REACTIONS

2014 ◽  
Vol 06 (03) ◽  
pp. 1450023 ◽  
Author(s):  
A. D. DROZDOV

A model is developed for the mechanical response of hydrogels whose deformation is accompanied by swelling–shrinkage driven by the Belousov–Zhabotinsky reaction. A hydrogel is treated as a compressible network of flexible chains with a time-dependent reference (stress-free) state whose evolution is driven by oxidation of a catalyst pendent to chains. The model involves three components: stress–strain relations for deformation of a polymer network coupled with swelling, kinetic equations for chemical reactions with diffusing species, and relations connecting changes in the reference configuration with concentration of oxidized catalyst. Results of simulation confirm the ability of the model to describe autonomous oscillations of a hydrogel layer under constrained swelling. The effect of material parameters on amplitude and frequency of oscillations is studied numerically. In agreement with the available experimental data, it is shown that amplitude of oscillations decreases and their period increases when (i) elastic modulus of the polymer network grows, (ii) a good solvent is replaced with a poor one, (iii) concentration of a catalyst is reduced, (iv) size of a sample decreases, and (v) diffusivities of solvent and activator grow.

2018 ◽  
Vol 29 (14) ◽  
pp. 2902-2918 ◽  
Author(s):  
Roberto Brighenti ◽  
Andreas Menzel ◽  
Franck J Vernerey

Electroactive polymers with time-dependent behavior are considered in the present paper by way of a new physics-based micromechanical model; such viscoelastic response is described by the internal evolution of the polymer network, providing a new viewpoint on the stress relaxation occurring in elastomers. The main peculiarity of such internally rearranging materials is their capacity to locally reset their reference stress-free state, leading to a mechanical behavior that relaxes out (eases off) an induced stress state and that can thus be assimilated to a sort of internal self-healing process. Such high deformability and recoverability displayed by dynamically cross-linked polymers can be conveniently exploited when they are coupled in electromechanical problems; the deformation induced by an electric field can be easily tuned by the intensity of the electric field itself and the obtained shape can be maintained without any electric influence once the material microstructure has rearranged after a sufficient curing time. In the present paper, both features of the polymeric material, that is, internal remodeling and electromechanical coupled response, are considered and a theoretical framework is established to simulate representative boundary value problems.


1974 ◽  
Vol 11 (3) ◽  
pp. 377-387 ◽  
Author(s):  
R. Balescu ◽  
J. H. Misguich

The general theory developed in part 1 is illustrated for a plasma described by the weak-coupling (Landau) approximation. The kinetic equation, valid for arbitrarily strong external fields, is written out explicitly.


When a muscle has been soaked in a moderately hypertonic solution its mechanical response to a shock is delayed, but its heat production is almost normal and starts considerably earlier than its shortening. After a more hypertonic solution the mechanical response is abolished, but a substantial part of the heat production remains. These effects are rapidly reversed by soaking in a normal isotonic solution. They strengthen the previous conclusion that chemical reactions triggered by a stimulus precede the mechanical response.


Author(s):  
Philipp Knospe ◽  
Patrick Böhm ◽  
Jochen Gutmann ◽  
Michael Dornbusch

AbstractNowadays, coating materials must meet high demands in terms of mechanical, chemical and optical properties in all areas of application. Amongst others, amines and isocyanates are used as crosslinking components for curing reactions, meeting the highly demanding properties of the coatings industry. In this work, a new crosslinking reaction for coatings based on oxazoline chemistry is investigated with the objective to overcome disadvantages of established systems and fulfill the need for sustainable coating compounds. The oxazoline-group containing resin, synthesized from commercially available substances, undergoes cationic self-crosslinking polymerization to build up a network based on urethane and amide moieties. NMR-, IR- and ES-mass spectroscopy are suitable techniques to characterize the synthesized oxazoline monomers, which are linked to polyisocyanates and polymerized afterwards via self-polymerization. The progress of crosslinking is followed by changes in IR spectra and by rheological measurements to calculate time dependent values for storage and loss modulus. The glass transition temperature of the resulting coating is determined, too. Furthermore, sol–gel-analysis is performed to determine the degree of crosslinking. After application on steel and aluminium panels, application tests are performed. In addition to excellent adhesion to the substrate, the polymer network shows promising mechanical properties and with that it could represent a new technology for the coatings industry.


Author(s):  
Aref Ghaderi ◽  
Vahid Morovati ◽  
Pouyan Nasiri ◽  
Roozbeh Dargazany

Abstract Material parameters related to deterministic models can have different values due to variation of experiments outcome. From a mathematical point of view, probabilistic modeling can improve this problem. It means that material parameters of constitutive models can be characterized as random variables with a probability distribution. To this end, we propose a constitutive models of rubber-like materials based on uncertainty quantification (UQ) approach. UQ reduces uncertainties in both computational and real-world applications. Constitutive models in elastomers play a crucial role in both science and industry due to their unique hyper-elastic behavior under different loading conditions (uni-axial extension, biaxial, or pure shear). Here our goal is to model the uncertainty in constitutive models of elastomers, and accordingly, identify sensitive parameters that we highly contribute to model uncertainty and error. Modern UQ models can be implemented to use the physics of the problem compared to black-box machine learning approaches that uses data only. In this research, we propagate uncertainty through the model, characterize sensitivity of material behavior to show the importance of each parameter for uncertainty reduction. To this end, we utilized Bayesian rules to develop a model considering uncertainty in the mechanical response of elastomers. As an important assumption, we believe that our measurements are around the model prediction, but it is contaminated by Gaussian noise. We can make the noise by maximizing the posterior. The uni-axial extension experimental data set is used to calibrate the model and propagate uncertainty in this research.


2018 ◽  
Vol 33 (4) ◽  
pp. 592-602
Author(s):  
Amanda Mattsson ◽  
Tetsu Uesaka

Abstract In end-use, containerboard is subjected to a variety of loading histories, such as seconds of loading/unloading, hours of vibration, days of creep load. The fundamental question is whether the commonly measured static strength represents “strength” under these conditions. Another question is, since those time-dependent failures are notoriously variable, how to describe the probabilistic aspect. This study concerns the characterisation of these different facets of “strength”. In our earlier work, we have investigated the theoretical framework for time-dependent, probabilistic failures, and identified three material parameters: (1) characteristic strength, {S_{c}}, representing short-term strength, (2) brittleness/durability parameter, ρ, and (3) reliability parameter, β. We have also developed a new method that allows us to determine all these parameters much faster than typical creep tests. Using the new method, we have started investigating effects of basic papermaking variables on the new material parameters. Among the samples tested, the parameter ρ varied from 20 to 50, and β from 0.5 to 1.0. This suggests that, even within the current papermaking practice, there is a wide operating window to tune these new material parameters. The future work is, therefore, to find specific manufacturing variables that can systematically change these new material parameters.


2020 ◽  
Vol 2 (4) ◽  
pp. 11-33
Author(s):  
Anna Pandolfi ◽  
Andrea Montanino

Purpose: The geometries used to conduct numerical simulations of the biomechanics of the human cornea are reconstructed from images of the physiological configuration of the system, which is not in a stress-free state because of the interaction with the surrounding tissues. If the goal of the simulation is a realistic estimation of the mechanical engagement of the system, it is mandatory to obtain a stress-free configuration to which the external actions can be applied. Methods: Starting from a unique physiological image, the search of the stress-free configuration must be based on methods of inverse analysis. Inverse analysis assumes the knowledge of one or more geometrical configurations and, chosen a material model, obtains the optimal values of the material parameters that provide the numerical configurations closest to the physiological images. Given the multiplicity of available material models, the solution is not unique. Results: Three exemplary material models are used in this study to demonstrate that the obtained, non-unique, stress-free configuration is indeed strongly dependent on both material model and on material parameters. Conclusion: The likeliness of recovering the actual stress-free configuration of the human cornea can be improved by using and comparing two or more imaged configurations of the same cornea.


2011 ◽  
Vol 66 (1-2) ◽  
pp. 40-46 ◽  
Author(s):  
Corina Fetecau ◽  
Muhammad Imran ◽  
Constantin Fetecau

Taylor-Couette flow in an annulus due to a time-dependent torque suddenly applied to one of the cylinders is studied by means of finite Hankel transforms. The exact solutions, presented under series form in terms of usual Bessel functions, satisfy both the governing equations and all imposed initial and boundary conditions. They can easily be reduced to give similar solutions for Maxwell, second grade, and Newtonian fluids performing the same motion. Finally, some characteristics of the motion, as well as the influence of the material parameters on the behaviour of the fluid, are emphasized by graphical illustrations.


2019 ◽  
Vol 34 (1) ◽  
pp. 107-116
Author(s):  
Jussi Lahti ◽  
Jarmo Kouko ◽  
Ulrich Hirn

Abstract The influence of wetting and drying during high-speed inkjet (HSI) printing on the time-dependent mechanical behavior of commercial HSI papers was investigated using a custom-built C-Impact tensile tester. In HSI printing the water based ink solvent penetrates into the paper while the colorants adhere onto the surface. We found that water strongly affected paper stiffness and strength already 0.1 s after wetting. Creep compliance and paper strain at a typical HSI printing input tension of 180 N/m are varying strongly during the different process steps of HSI printing. In order to achieve a good color registration and print quality, we thus recommend that the web tension should be dynamically controlled in each process step to prevent straining after wetting or shrinkage during drying.


2010 ◽  
Vol 123-125 ◽  
pp. 603-606
Author(s):  
Mohammad Tahaye Abadi

A viscoelastic model is developed to describe the mechanical response of fiber-reinforced elastomeric composites at large deformation. A continuum approach is used to model the macroscopic mechanical behavior of elastomeric materials reinforced with unidirectional fibers, in which the resin and fibers are regarded as a single homogenized anisotropic material. The anisotropic viscoelastic constitutive model is developed considering transient reversible network theory. An efficient computational algorithm based on micromechanical modeling is proposed to relate the material parameters of constitutive model to the mechanical properties of composite constituents at finite strain. The microstructure is identified by a representative volume element (RVE) and it is subjected to large deformation with considering the conformity of opposite boundaries. The material parameters of the viscoelastic constitutive law are determined based on the response of heterogeneous microstructure which is examined under different loading conditions.


Sign in / Sign up

Export Citation Format

Share Document