scholarly journals ELECTRONIC PROPERTIES OF THIN FILMS SUBLIMED FROM La@C82 AND Li@C60

NANO ◽  
2008 ◽  
Vol 03 (03) ◽  
pp. 155-160 ◽  
Author(s):  
V. N. POPOK ◽  
A. V. GROMOV ◽  
M. JÖNSSON ◽  
A. TANINAKA ◽  
H. SHINOHARA ◽  
...  

La @ C 82 and Li @ C 60 thin films obtained by sublimation in vacuum are studied using four-probe current–voltage measurements and atomic force microscopy. In situ electrical measurements show semiconducting behavior of both films with room-temperature resistivity of 21 ± 8 and 1230 ± 50 Ω · cm for the La @ C 82 and Li @ C 60, respectively. A variable range hopping mechanism of conductance is suggested from the temperature dependences of resistance. The activation energies for electron transport are calculated for both metallofullerenes. Irreversible changes to the Li @ C 60 film structure increasing the film resistivity to values typical for C 60 are found at elevated temperatures. The effect of exposure to ambient atmosphere on the conductance of the films is discussed.

1996 ◽  
Vol 449 ◽  
Author(s):  
A. G. Randolph ◽  
S.K. Kurinec

ABSTRACTAluminum nitride thin films (∼ 100 mn) have been deposited on silicon substrate by reactive sputtering using Al target in 1:1 Ar:N2 environment. The atomic force microscopy examination revealed continuous microcrystalline film structure. The Auger electron spectroscopic analysis show the presence of oxygen in the films. The annealing at 850 C in nitrogen is found to cause recrystallization and further oxidation of the films. The films can be characterized as lossy dielectrics with relative permittivity ∼ 10, higher than the bulk value of 8.9. Annealing the films is found to reduce anion vacancies and improve the dielectric strength within a range of a few MV/cm in these thin films.


1995 ◽  
Vol 403 ◽  
Author(s):  
W. K. Man ◽  
H. Yan ◽  
S. P. Wong ◽  
T. K. S. Wong ◽  
I. H. Wilson

AbstractWe have studied grain growth and electrical properties of polycrystalline tin oxide (SnO2) thin films prepared by vacuum-evaporation with a two-step process: evaporation of tin metal films and then oxidation of these metal films. Surface morphology of the SnO2thin films was observed by atomic force microscopy. The grain size of the SnO2thin films is found to increase with the film thickness and oxidation temperature. Kinetics of the grain growth is discussed in terms of a 3-dimensional diffusion limited process. The diode current-voltage (I-V) characteristic of the SnO2/Si heterojunctions (isotype and anisotype) was measured in the temperature range of 14K-383K. Changes in the diode ideality factor and threshold voltage with temperature are discussed. In addition, we present ambient tunnelling I-V results measured from individual SnO2grains.


2013 ◽  
Vol 17 (06n07) ◽  
pp. 454-459 ◽  
Author(s):  
Aseel Hassan ◽  
Tamara Basova ◽  
Ayşe Gül Gürek ◽  
Vefa Ahsen

In this work, the investigation of structural features, spectral and electrical properties of spin-coated films of substituted lutetium bisphthalocyanine Lu ( Pc ( SR )8)2, where R = - C 6 H 13 was carried out. The current-voltage characteristics of ITO/ Lu ( Pc ( SR )8)2/ Al film sandwich structures were measured over the temperature range 120–380 K. AC electrical properties, mainly the dependence of conductance and capacitance on frequency and temperature are also discussed. Structural and electrical properties of anthracene-doped Lu ( Pc ( SR )8)2, films have also been investigated. Furthermore, optical properties of thin films of pure and anthracene-doped Lu ( Pc ( SR )8)2 films were also studied using spectroscopic ellipsometry, while atomic force microscopy (AFM) was used to study changes in films' morphology of doped films and compared with that of undoped films. Doping Lu ( Pc ( SR )8)2, films with anthracene is shown to lead to an increase in films' conductivity. These studies will provide full understanding of the physical properties of the Lu ( Pc ( SR )8)2, thin films, both doped and undoped, with the aim of exploitation in electronic device applications, such as fabrication of all organic solar cells.


2001 ◽  
Vol 672 ◽  
Author(s):  
G. Wei ◽  
J. Du ◽  
A. Rar ◽  
J. A. Barnard

ABSTRACTThe nanoindentation behavior of DC magnetron sputtered 10 nm Cu and 10 nm Cu/2 nm Cr thin films deposited on Si (100) has been studied using a Hysitron nanomechanical system. X- ray diffraction and X-ray reflectivity were used to measure the film structure and film thickness, respectively. The grain size and orientation of Cu and Cu/Cr thin films were measured by TEM. Atomic force microscopy (AFM) was used to evaluate the surface morphology and roughness. At the same load, the nanoindentaion displacement of Cu/Cr is smaller than that for Cu, i.e., the 2nm thick Cr underlayer enhances the hardness of Cu. X-ray, TEM, and AFM results show that the grain size of Cu/Cr (< 15 nm) is actually larger than Cu (∼ 3 nm) indicating that the inverse Hall-Petch relationship may be operative.


2000 ◽  
Vol 655 ◽  
Author(s):  
M.W. Cole ◽  
P.C. Joshi ◽  
E. Ngo ◽  
C.W. Hubbard ◽  
U. Lee ◽  
...  

AbstractWe have investigated the structural, compositional, interfacial, surface morphological and dielectric properties of Ba0.6Sr0.4TiO3 solid solution thin films La doped from 0 to 10 mol%. The doped thin films were prepared by the metalorganic solution deposition technique using carboxylate-alkoxide precursors. After post-deposition annealing in oxygen ambient at 750 °C the films were characterized via x-ray diffraction, Auger electron microscopy, field emission scanning electron microscopy, and atomic force microscopy. The electrical measurements were achieved in the metal-insulator-metal (MIM) configuration with Pt as the top and bottom electrode. Our results demonstrated that La doping had a strong effect on the films microstructural, dielectric and insulating properties. Specifically, 1 mol% La doped BST films exhibited a lower dielectric constant, 283 and higher resistivity 31.4×1013 W-cm with respect to that of undoped BST. The loss tangent and tunability (at 100 kHz) of the 1 mol% La doped BST films were 0.019 and 21% (at E=300kV/cm) respectively.


Author(s):  
Hiba H.ISSA

The preparation of the AgSb (SxSe1-x)2 was done by the quenching method. It is a quaternary substance with sulfur. Preparation of AgSb (SxSe1-x)2 thin films with sulfur was done on the glass substrate at room temperature 303K with a pressure vacuum of (0.01) bar by using a technique called pulsed laser deposition at thickness (~100 nanometres). The structural properties of alloys thin films are tested by x-ray diffraction analysis. Our findings showed that all compounds have polycrystalline structure with cubic phase due to the deposition of the AgSb (SxSe1-x)2. The atomic force microscopy is used for showing mean size, wherever mean size decreases, and the roughness becomes more irregularity with the increase of sulphur level in the alloys. The electrical measurements of AgSb (SxSe1-x)2 /p-Si and AgSb (SxSe1-x)2/n-Si heterojunctions which is included I-V properties cell area structures of(0.61) cm2 were measured. The AgSb (SxSe1-x)2/n-Si showed the best results with a maximum open voltage Voc of these heterojunctions with Sulfur level x= 0.4). It was most suitable for solar cell high efficiency (η = 0.07%) at x= 0.4 on n-Si substrate. Keywords: Ag Sb, Quenching Method, Cell Application.


2019 ◽  
Vol 126 (5) ◽  
pp. 538
Author(s):  
А.Г. Гусейнов ◽  
В.М. Салманов ◽  
Р.М. Мамедов ◽  
А.А. Салманова ◽  
Ф.М. Ахмедова

AbstractGaS thin films have been grown by the SILAR method, their structures have been analyzed, and their optical and photoelectric properties have been investigated. The internal structure of the samples obtained have been studied using X-ray diffraction (XRD) analysis, atomic force microscopy (AFM), energy-dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The GaS band gap has been determined from the absorption spectrum. p -GaS/ n -InSe heterojunctions have been formed on the basis of GaS crystals and InSe thin films. Current–voltage, optical, photoelectric, and luminescence characteristics of p -GaS/ n -InSe heterojunctions have been experimentally investigated.


Author(s):  
M. DiBattista ◽  
S. V. Patel ◽  
J. F. Mansfield ◽  
J. L. Gland ◽  
J. W. Schwank

Thin film electronic devices that employ resistance change responses of Pt / Ti films to detect gas species have been microfabricated at the University of Michigan. Atomic force microscopy (AFM) is used to investigate morphology of the Pt / Ti sensing films deposited on the microfabricated device. These Pt / Ti sensing films are strongly influenced by many factors, making it difficult to determine the exact relationship between film structure, chemical sensitivity, and selectivity. In-situ AFM investigations of Pt / Ti films on this device at elevated temperatures provides the opportunity for real time observation of film morphology changes under controlled conditions, testing sensing film stability during device operation, and correlating film structure to resistance.Observation of the Pt / Ti film surface and in-situ resistance measurements at elevated temperatures are possible due to the construction of the sensing device. The sensors are based on chemically active thin films deposited on a micromachined silicon window, supported by a 300 μn thick silicon rim.


1999 ◽  
Vol 596 ◽  
Author(s):  
E. Ching-Prado ◽  
W. Pérez ◽  
P. S. Dobalt ◽  
R. S. Katiyart ◽  
S. Tirumala ◽  
...  

AbstractThin films of ferroelectric (SrBi2Ta2O9)x(Bi3TiNbO9)1-x layered structure (for x = 0.0, 0.2, … 1.0) were prepared by a metal organic solution deposition method on Pt/TiO2/SiO2/Si substrates. Raman spectroscopy, X-ray diffraction, atomic force microscopy (AFM), and electrical characterization techniques were utilized to study the inclusion of SrBi2Ta2O9 (SBT) in the Bi3TiNbO9 (BTN) system. The Raman spectra show frequency shifts and broadening of modes as x increases from 0.0 to 0.4, which are related to the nature of Sr and Bi in the A-sites, and Ta, Ti, and Nb in the B-sites. Smooth surfaces without any cracks or defects were evidenced in each of these films by AFM. These images also indicate that the grain size in the films increases with increasing SBT content in the BTN compound. Electrical measurements show that the remanent polarization (Pr) and the coercive field (Ec) values in the x=0.0 film (2 μC/cm2 and 30 kV/cm, respectively) increase to 12.5 μC/cm2 and 125 kV/cm for x=0.6. A decrease in these parameters was found for higher compositions.


2013 ◽  
Vol 341-342 ◽  
pp. 149-152
Author(s):  
Guo Hua Wang ◽  
Niu Yi Sun ◽  
Juan Qin ◽  
Wei Min Shi ◽  
Lin Jun Wang

Half-Heusler compound YNiBi thin films have been prepared by direct current (DC) magnetron sputtering from an YNiBi target. The film structure and surface morphology of YNiBi thin films were analyzed with X-ray diffraction (XRD) and atomic force microscopy (AFM). The electrical properties of the films were studied by Hall measurements. XRD patterns show that the films prepared at lower sputtering pressure and higher growth temperature exhibit minimum full width at half maximum (FWHM) and maximum diffraction peaks which belong to the same family of crystal planes. Results of AFM reveal that the surface of a variety of fabricated YNiBi films is smooth and keeps good adhesion to the substrate. The increasing of substrate temperature and slightly lowering of sputtering pressure are in favor of reducing the root mean square roughness during magnetron sputtering process. The film with high crystallinity has an electrical conductivity of 938 S/cm and carrier concentration of 2.15×1021cm-3.


Sign in / Sign up

Export Citation Format

Share Document