Biomathematical analysis of carbon nanotubes due to ciliary motion

2015 ◽  
Vol 08 (02) ◽  
pp. 1550023 ◽  
Author(s):  
Noreen Sher Akbar

In this paper, the consequences of cilia motion are reflected by the CNTs nanoparticles. The problem is expressed in a symmetric channel with ciliated walls. Exact solutions of the governing flow problem are obtained for pressure gradient, temperature and velocities of the fluid. Streamlines for the velocity profile are plotted to discuss the trapping phenomenon.

2020 ◽  
Vol 16 ◽  
Author(s):  
Adel Alblawi ◽  
Saba Keyani ◽  
S. Nadeem ◽  
Alibek Issakhov ◽  
Ibrahim M. Alarifi

Objective: In this paper, we consider a model that describes the ciliary beating in the form of metachronal waves along with the effects of Magnetohydrodynamic fluid over a curved channel with slip effects. This work aims at evaluating the effect of Magnetohydrodynamic (MHD) on the steady two dimensional (2-D) mixed convection flow induced in carbon nanotubes. The work is done for both the single wall nanotube and multiple wall nanotube. The right wall and the left wall possess a metachronal wave that is travelling along the outer boundary of the channel. Methods: The wavelength is considered as very large for cilia induced MHD flow. The governing linear coupled equations are simplified by considering the approximations of long wavelength and small Reynolds number. Exact solutions are obtained for temperature and velocity profile. The analytical expressions for the pressure gradient and wall shear stresses are obtained. Term for pressure rise is obtained by applying Numerical integration method. Results: Numerical results of velocity profile are mentioned in a table form, for various values of solid volume fraction, curvature, Hartmann number [M] and Casson fluid parameter [ζ]. Final section of this paper is devoted to discussing the graphical results of temperature, pressure gradient, pressure rise, shear stresses and stream functions. Conclusion: Velocity profile near the right wall of the channel decreases when we add nanoparticles into our base fluid, whereas an opposite behaviour is depicted near the left wall due to ciliated tips whereas the temperature is an increasing function of B and ߛ and decreasing function of ߶.


2015 ◽  
Vol 08 (02) ◽  
pp. 1550026 ◽  
Author(s):  
Noreen Sher Akbar ◽  
Z. H. Khan

The impulsion system of cilia motion is deliberated by biviscosity fluid model. The problem of two-dimensional motion of biviscosity fluid privileged in a symmetric channel with ciliated walls is considered. The features of ciliary structures are resolute by the supremacy of viscous effects above inertial possessions by the long-wavelength and low Reynolds approximation. Closed-form solutions for the longitudinal pressure gradient, temperature and velocities are obtained. The pressure gradient and volume flow rate for different values of the biviscosity are also premeditated. The flow possessions for the biviscosity fluid resolute as a function of the cilia and metachronal wave velocity.


1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


1958 ◽  
Vol 2 (04) ◽  
pp. 33-51
Author(s):  
Yun-Sheng Yu

Tests made on the turbulent boundary layer on a circular cylinder in axial flow at zero pressure gradient are described. From the measurements, similarity laws of the velocity profile are formulated, and various boundary-layer characteristics are evaluated and compared with the flatplate results. It is found that the effect of transverse curvature is to increase the surface shearing stress and to decrease the boundary-layer thickness, and that the latter variation is more pronounced than the former.


2014 ◽  
Vol 30 (4) ◽  
pp. 411-422 ◽  
Author(s):  
E. H. Aly ◽  
A. Ebaid

AbstractThe peristaltic flow of nanofluids under the effect of slip conditions was theoretically investigated. The mathematical model was governed by a system of linear and non-linear partial differential equations with prescribed boundary conditions. Then, the exact solutions were successfully obtained and reported for the first time in the present work. These exact solutions were then used for studying the effects of the slip, thermophoresis, Brownian motion parameters and many others on the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and pressure gradient. In addition, it is proved that the obtained exact solutions are reduced to the literature results in the special cases.In the general case, it was found that on comparing the current solutions with the approximate ones obtained using the homotopy perturbation method in literature, remarkable differences have been detected for behaviour of the pressure rise, velocity profiles, temperature distribution, nanoparticle concentration and finally the pressure gradient. An example of these differences is about effect of the Brownian motion parameter on the velocity profile; where it was shown in this paper that the small values of this parameter have not a significant effect on the velocity, while this situation was completely different in the published work. Many other significant differences have been also discussed. Therefore, these observed differences recommend the necessity of including the convergence issue when applying the homotopy perturbation method or any other series solution method to solve a physical model. In conclusion. The current results may be considered as a base for any future analysis and/or comparisons.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 819-826
Author(s):  
Remus-Daniel Ene ◽  
Camelia Pop

AbstractA Hamilton-Poisson realization of the MHD Jeffery-Hamel fluid flow problem is proposed. Tthe nonlinear stability of the equilibrium states is discussed. A comparison between the analytic solutions obtained using the OHAM method and the exact solutions provided by the Hamilton-Poisson realization are presented.


2012 ◽  
Vol 116 (1180) ◽  
pp. 569-598 ◽  
Author(s):  
A. Rona ◽  
M. Monti ◽  
C. Airiau

AbstractThe generation of a fully turbulent boundary layer profile is investigated using analytical and numerical methods over the Reynolds number range 422 ≤ Reθ≤ 31,000. The numerical method uses a new mixing length blending function. The predictions are validated against reference wind tunnel measurements under zero streamwise pressure gradient. The methods are then tested for low and moderate adverse pressure gradients. Comparison against experiment and DNS data show a good predictive ability under zero pressure gradient and moderate adverse pressure gradient, with both methods providing a complete velocity profile through the viscous sub-layer down to the wall. These methods are useful computational fluid dynamic tools for generating an equilibrium thick turbulent boundary layer at the computational domain inflow.


Sign in / Sign up

Export Citation Format

Share Document