MANUFACTURING DNA NANOWIRES WITH AIR BLOWING ASSEMBLY ON MICROPATTERNED SURFACE

Nano LIFE ◽  
2013 ◽  
Vol 03 (02) ◽  
pp. 1350001 ◽  
Author(s):  
KARTIK KUMAR RAJAGOPALAN ◽  
JUAN CHEN ◽  
BAIYANG LU ◽  
SHENGNIAN WANG

Herein, we present a new flow-guided assembly approach to align and position DNA nanowires. Single or multiple drops of a λ-DNA solution were loaded from one side of template with micropad array and blown off by air flow. DNA molecules were aligned along the flow direction and well positioned under the guiding of pre-defined micropatterns. Different from other pioneering work, we focused on investigating the assembly quality, reliability and appropriateness for large-scale manufacturing. We correlated the assembly quality (alignment, patterning and the surface coverage) with the concentration of DNA in droplets and droplet evaporation and suggested appropriate process windows. With this new approach, the synthesis, alignment and patterning of nanowires may be done in a reliable and efficient manner and with high throughput.

Author(s):  
Eder D. de Moraes ◽  
Otávio J. G. A. Saab ◽  
Marco A. Gandolfo ◽  
Rodrigo Y. P. Marubayashi ◽  
Ulisses D. Gandolfo

ABSTRACT Pest, disease and weed control in large-scale crops depend on the application of agrochemicals. These applications are subject to several factors that can lead to drift. The objective of this study was to evaluate the effect of spray nozzles with inclined flat jet, on the drift. The drift was collected in a 10 m wind tunnel, with a spray system inside. The samples were collected in 5 horizontal points, from 2.0 to 6.0 m away from the spray nozzle and 5 points in the vertical, from 0.1 to 0.5 m away from the lower base of the wind tunnel, totaling 25 sample points. The mixture applied was glyphosate (isopropylamine salt, 1080 g a.e. ha-1) with 2,4-D (dimethylamine salt, 1.005 g a.e. ha-1). The nozzles J3D 100 025, JGC 120 02, JAP 110 015 and ADI 110 015 (control), inclined by 37.5º, 20º, 15º and 0º, respectively, were used in two directions of spray: upwind and downwind of the air flow direction. The nozzles J3D, JGC and JAP, when inclined downwind reduced the drift by 16.1, 2.6 and 39.0%, respectively, relative to the control, and when inclined upwind, reduced drift by 53.4, 3.9 and 18.6%, respectively, relative to the control. Spray nozzles with second-generation air-induction inclined flat jet (JAP) and standard inclined flat jet (J3D) reduce the collected drift compared to the nozzle without inclination, regardless of wind flow direction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Blanco ◽  
Mar González-Ramírez ◽  
Luciano Di Croce

AbstractLarge-scale sequencing techniques to chart genomes are entirely consolidated. Stable computational methods to perform primary tasks such as quality control, read mapping, peak calling, and counting are likewise available. However, there is a lack of uniform standards for graphical data mining, which is also of central importance. To fill this gap, we developed SeqCode, an open suite of applications that analyzes sequencing data in an elegant but efficient manner. Our software is a portable resource written in ANSI C that can be expected to work for almost all genomes in any computational configuration. Furthermore, we offer a user-friendly front-end web server that integrates SeqCode functions with other graphical analysis tools. Our analysis and visualization toolkit represents a significant improvement in terms of performance and usability as compare to other existing programs. Thus, SeqCode has the potential to become a key multipurpose instrument for high-throughput professional analysis; further, it provides an extremely useful open educational platform for the world-wide scientific community. SeqCode website is hosted at http://ldicrocelab.crg.eu, and the source code is freely distributed at https://github.com/eblancoga/seqcode.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


Author(s):  
V. Skibchyk ◽  
V. Dnes ◽  
R. Kudrynetskyi ◽  
O. Krypuch

Аnnotation Purpose. To increase the efficiency of technological processes of grain harvesting by large-scale agricultural producers due to the rational use of combine harvesters available on the farm. Methods. In the course of the research the methods of system analysis and synthesis, induction and deduction, system-factor and system-event approaches, graphic method were used. Results. Characteristic events that occur during the harvesting of grain crops, both within a single production unit and the entire agricultural producer are identified. A method for predicting time intervals of use and downtime of combine harvesters of production units has been developed. The roadmap of substantiation the rational seasonal scenario of the use of grain harvesters of large-scale agricultural producers is developed, which allows estimating the efficiency of each of the scenarios of multivariate placement of grain harvesters on fields taking into account influence of natural production and agrometeorological factors on the efficiency of technological cultures. Conclusions 1. Known scientific and methodological approaches to optimization of machine used in agriculture do not take into account the risks of losses of crops due to late harvesting, as well as seasonal natural and agrometeorological conditions of each production unit of the farmer, which requires a new approach to the rational use of rational seasonal combines of large agricultural producers. 2. The developed new approach to the substantiation of the rational seasonal scenario of the use of combined harvesters of large-scale agricultural producers allows taking into account the costs of harvesting of grain and the cost of the lost crop because of the lateness of harvesting at optimum variants of attraction of additional free combine harvesters. provides more profit. 3. The practical application of the developed road map will allow large-scale agricultural producers to use combine harvesters more efficiently and reduce harvesting costs. Keywords: combine harvesters, use, production divisions, risk, seasonal scenario, large-scale agricultural producers.


Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


Author(s):  
M. E. J. Newman ◽  
R. G. Palmer

Developed after a meeting at the Santa Fe Institute on extinction modeling, this book comments critically on the various modeling approaches. In the last decade or so, scientists have started to examine a new approach to the patterns of evolution and extinction in the fossil record. This approach may be called "statistical paleontology," since it looks at large-scale patterns in the record and attempts to understand and model their average statistical features, rather than their detailed structure. Examples of the patterns these studies examine are the distribution of the sizes of mass extinction events over time, the distribution of species lifetimes, or the apparent increase in the number of species alive over the last half a billion years. In attempting to model these patterns, researchers have drawn on ideas not only from paleontology, but from evolutionary biology, ecology, physics, and applied mathematics, including fitness landscapes, competitive exclusion, interaction matrices, and self-organized criticality. A self-contained review of work in this field.


2006 ◽  
Vol 11 (3) ◽  
pp. 236-246 ◽  
Author(s):  
Laurence H. Lamarcq ◽  
Bradley J. Scherer ◽  
Michael L. Phelan ◽  
Nikolai N. Kalnine ◽  
Yen H. Nguyen ◽  
...  

A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for positionspecific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNAinterference (RNAi).


Sign in / Sign up

Export Citation Format

Share Document