scholarly journals THE ECONOMIC IMPACT OF OCEAN ACIDIFICATION ON CORAL REEFS

2012 ◽  
Vol 03 (01) ◽  
pp. 1250002 ◽  
Author(s):  
LUKE M. BRANDER ◽  
KATRIN REHDANZ ◽  
RICHARD S. J. TOL ◽  
PIETER J. H. VAN BEUKERING

Because ocean acidification has only recently been recognized as a problem caused by CO2 emissions, impact studies are still rare and estimates of the economic impact are absent. This paper estimates the economic impact of ocean acidification on coral reefs which are generally considered to be economically as well as ecologically important ecosystems. First, we conduct an impact assessment in which atmospheric concentration of CO2 is linked to ocean acidity causing coral reef area loss. Next, a meta-analytic value transfer is applied to determine the economic value of coral reefs around the world. Finally, these two analyses are combined to estimate the economic impact of ocean acidification on coral reefs for the four IPCC marker scenarios. We find that the annual economic impact rapidly escalates over time, because the scenarios have rapid economic growth in the relevant countries and coral reefs are a luxury good. Nonetheless, the annual value in 2100 in still only a fraction of total income, one order of magnitude smaller than the previously estimated impact of climate change. Although the estimated impact is uncertain, the estimated confidence interval spans one order of magnitude only. Future research should seek to extend the estimates presented here to other impacts of ocean acidification and investigate the implications of our findings for climate policy.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ralf Buckley ◽  
Paula Brough ◽  
Leah Hague ◽  
Alienor Chauvenet ◽  
Chris Fleming ◽  
...  

Abstract We evaluate methods to calculate the economic value of protected areas derived from the improved mental health of visitors. A conservative global estimate using quality-adjusted life years, a standard measure in health economics, is US$6 trillion p.a. This is an order of magnitude greater than the global value of protected area tourism, and two to three orders greater than global aggregate protected area management agency budgets. Future research should: refine this estimate using more precise methods; consider interactions between health and conservation policies and budgets at national scales; and examine links between personalities and protected area experiences at individual scale.


2012 ◽  
Vol 279 (1745) ◽  
pp. 4106-4114 ◽  
Author(s):  
C. V. Palmer ◽  
N. Traylor-Knowles

Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts.


2021 ◽  
Author(s):  
Christopher Jury ◽  
Keisha Bahr ◽  
Evan Barba ◽  
Russell Brainard ◽  
Annick Cros ◽  
...  

Abstract Coral reefs are among the most sensitive ecosystems affected by ocean acidification and warming, and are predicted to shift from net accreting calcifier-dominated systems to net eroding algal-dominated systems over the coming decades. Here we present a long-term experimental study examining the responses of entire mesocosm coral reef communities to acidification (-0.2 pH units), warming (+ 2°C), and combined future ocean (-0.2 pH, + 2°C) treatments. We show that under future ocean conditions, net calcification rates declined yet remained positive, corals showed reduced abundance yet were not extirpated, and community composition shifted while species richness was maintained. Our results suggest that under Paris Climate Agreement targets, coral reefs could persist in an altered functional state rather than collapse.


Author(s):  
Edward J. Oughton

Space weather is a collective term for different solar or space phenomena that can detrimentally affect technology. However, current understanding of space weather hazards is still relatively embryonic in comparison to terrestrial natural hazards such as hurricanes, earthquakes, or tsunamis. Indeed, certain types of space weather such as large Coronal Mass Ejections (CMEs) are an archetypal example of a low-probability, high-severity hazard. Few major events, short time-series data, and the lack of consensus regarding the potential impacts on critical infrastructure have hampered the economic impact assessment of space weather. Yet, space weather has the potential to disrupt a wide range of Critical National Infrastructure (CNI) systems including electricity transmission, satellite communications and positioning, aviation, and rail transportation. In the early 21st century, there has been growing interest in these potential economic and societal impacts. Estimates range from millions of dollars of equipment damage from the Quebec 1989 event, to some analysts asserting that losses will be in the billions of dollars in the wider economy from potential future disaster scenarios. Hence, the origin and development of the socioeconomic evaluation of space weather is tracked, from 1989 to 2017, and future research directions for the field are articulated. Since 1989, many economic analyzes of space weather hazards have often completely overlooked the physical impacts on infrastructure assets and the topology of different infrastructure networks. Moreover, too many studies have relied on qualitative assumptions about the vulnerability of CNI. By modeling both the vulnerability of critical infrastructure and the socioeconomic impacts of failure, the total potential impacts of space weather can be estimated, providing vital information for decision makers in government and industry. Efforts on this subject have historically been relatively piecemeal, which has led to little exploration of model sensitivities, particularly in relation to different assumption sets about infrastructure failure and restoration. Improvements may be expedited in this research area by open-sourcing model code, increasing the existing level of data sharing, and improving multidisciplinary research collaborations between scientists, engineers, and economists.


2017 ◽  
Author(s):  
Richard J. Matear ◽  
Andrew Lenton

Abstract. Carbon-climate feedbacks have the potential to significantly impact the future climate by altering atmospheric CO2 concentrations (Zaehle et al., 2010). By modifying the future atmospheric CO2 concentrations, the carbon-climate feedbacks will also influence the future trajectory for ocean acidification. Here, we use the CO2 emissions scenarios from 4 Representative Concentration Pathways (RCPs) with an Earth System Model to project the future trajectories of ocean acidification with the inclusion of carbon-climate feedbacks. We show that simulated carbon-climate feedbacks can significantly impact the onset of under-saturated aragonite conditions in the Southern and Arctic Oceans, the suitable habitat for tropical coral and the deepwater saturation states. Under higher emission scenarios (RCP8.5 and RCP6.0), the carbon-climate feedbacks advance the onset of under-saturation conditions and the reduction in suitable coral reef habitat by a decade or more. The impact of the carbon-climate feedback is most significant for the medium (RCP4.5) and low emission (RCP2.6) scenarios. For RCP4.5 scenario by 2100, the carbon-climate feedbacks nearly double the area of surface water under-saturated respect to aragonite and reduce by 50 % the surface water suitable for coral reefs. For RCP2.6 scenario by 2100, the carbon-climate feedbacks reduce the area suitable for coral reefs by 40 % and increase the area of under-saturated surface water by 20 %. The high sensitivity of the impact of ocean acidification to the carbon-climate feedbacks in the low to medium emissions scenarios is important because our recent commitments to reduce CO2 emissions are trying to move us on to such an emissions scenario. The study highlights the need to better characterise the carbon-climate feedbacks to ensure we do not excessively stress the oceans by under-estimating the future impact of ocean acidification.


2011 ◽  
Vol 8 (4) ◽  
pp. 8485-8513 ◽  
Author(s):  
M. Holcomb ◽  
A. L. Cohen ◽  
D. C. McCorkle

Abstract. The effects of nutrients and pCO2 on zooxanthellate and azooxanthellate colonies of the temperate scleractinian coral Astrangia poculata (Ellis and Solander, 1786) were investigated at two different temperatures (16 °C and 24 °C). Corals exposed to elevated pCO2 tended to have lower relative calcification rates, as estimated from changes in buoyant weights. No nutrient effect was observed. At 16 °C, gamete release was not observed, and no gender differences in calcification rate were observed. However, corals grown at 24 °C spawned repeatedly and male and female corals exhibited two different growth rate patterns. Female corals grown at 24 °C and exposed to CO2 had calcification rates 39 % lower than females grown at ambient CO2, while males showed only a 5 % decline in calcification under elevated CO2. At 16 °C, female and male corals showed similar reductions in calcification rates in response to elevated CO2 (15 % and 19 % respectively). At 24 °C, corals spawned repeatedly, while no spawning was observed at 16 °C. The increased sensitivity of females to elevated pCO2 may reflect a greater investment of energy in reproduction (egg production) relative to males (sperm production). These results suggest that both gender and spawning are important factors in determining the sensitivity of corals to ocean acidification and their inclusion in future research may be critical to predicting how the population structures of marine calcifiers will change in response to ocean acidification.


2013 ◽  
Vol 14 (Supplement_1) ◽  
pp. S413-S432 ◽  
Author(s):  
Gungor Hacioglu ◽  
Osman Gök

This study explores which metrics are considered important in measuring marketing performance in Turkish firms. In addition, the study examines the effects of sectoral differences and market dynamism, and the relationship between the importance attached to metrics and firm performance. The data collected from a sample of 145 Turkish firms via a structured questionnaire derived from the literature reveals that the most importance is attached to consumers’ attitudes metrics. Economic value added and customer lifetime value are the least important metrics in performance evaluation. No significant relationship occurs between the importance that executives attach to metrics and firm performance. Managerial implications and future research opportunities will be presented at the end. The study is, as far as is known, the first attempt at aiming to explore marketing metrics in Turkey, and one of a limited number of studies in emerging economies.


2021 ◽  
Author(s):  
Bryn Monnery

Poly(ethylene terephthalate) (PET) is an important commodity polymer that has the potential to be 100% recycled, but this is currently not economically viable as the costs of recovering the starting materials are greater than virgin materials. As well as PET, there are a number of other interesting poly(terephthalate)s which have higher economic value. However, for many of these, virgin material is necessary to avoid contamination with ET units. This can be avoided by chemically deconstructing the PET to simple terephthalates. In this work, we show that dimethyl terephthalate (DMT) can be easily obtained from PET, in high purity (> 99.5% for the crude) with a relatively low energy use (ca. 0.3 Mj.g-1), by using a microwave reactor. In a microwave reactor the methanolysis proceeds an order of magnitude faster than in a conventional reactor. This is apparently due to cavitation caused by hot-spots, which break up the PET, increasing the active surface, and an increased population of PET particles above the Ea in the hot zones.


2021 ◽  
Author(s):  
Laurie Charrieau ◽  
Katsunori Kimoto ◽  
Delphine Dissard ◽  
Beatrice Below ◽  
Kazuhiko Fujita ◽  
...  

<p>Ocean acidification is a consequence of current anthropogenic climate changes. The concomitant decrease in pH and carbonate ion concentration in sea water may have severe impacts on calcifying organisms. Coral reefs are among the first ecosystems recognized vulnerable to ocean acidification. Within coral reefs, large benthic foraminifera (LBF) are major calcium carbonate producers.</p><p>The aim of this study was to evaluate the effects of varying pH on survival and calcification of the symbiont-bearing LBF species <em>Peneroplis</em> spp. We performed culture experiments to study their resistance to ocean acidification conditions, as well as their resilience once placed back under open ocean pH (7.9).</p><p>After three days, small signs of test decalcification were observed on specimens kept at pH 7.4, and severe test decalcification was observed on specimens kept at pH 6.9, with the inner organic lining clearly appearing. After 32 days under pH 7.4, similar strongly decalcified specimens were observed. All the specimens were alive at the end of the experiment. This result demonstrates the resistance of <em>Peneroplis </em>spp. to an acidified pH, at least on a short period of time.</p><p>After being partially decalcified, some of the living specimens were placed back at pH 7.9. After one month, the majority of the specimens showed recalcification features, mostly by addition of new chambers. The trace elements concentrations of the newly formed chambers were analysed by LA-ICPMS. Interestingly, more chambers were added when food was given, which highlights the crucial role of energy source in the recalcification process. Moreover, the newly formed chambers were most of the time abnormal, and the general structure of the tests was altered, with potential impacts on reproduction and in situ survival. In conclusion, if symbiont-bearing LBF show some resistance and resilience to lowered pH conditions, they will remain strongly affected by ocean acidification.</p>


<em>Abstract</em>.—The Guadalupe Bass <em>Micropterus treculii</em> is a central Texas endemic black bass species occurring only in streams and rivers draining the Edwards Plateau ecoregion. It is designated the state fish of Texas and provides a popular sport fishery. In addition to being a popular sport fish, it is listed as a species of special concern due to habitat degradation and hybridization with Smallmouth Bass <em>M. dolomieu</em>. Past socioeconomic surveys of Texas black bass anglers have focused primarily on reservoir fisheries while little is known about fishing patterns, economic impact, and preferences of river and stream anglers. A Web-based open-access survey was used to determine fishing characteristics, assess attitudes and quantify the economic impact of anglers fishing rivers and streams in a 24-county region of Texas from August 20, 2011 to December 20, 2012, with a focus on anglers who specifically fished for Guadalupe Bass. A total of 700 respondents participated in the survey. More than half of respondents were paddlers targeting black bass, and 42% specifically fished for Guadalupe Bass on their trips. An additional 34% of anglers listed black bass species, which included Guadalupe Bass as their preferred species. Similar to previous surveys of Texas river and stream anglers, access was identified as the largest impediment to the future maintenance and improvement of river and stream fishing. Based on 563 surveys used in the economic impact analysis, using IMPLAN (Impact Analysis for Planning) Professional version 2 (Minnesota IMPLAN Group, Minneapolis), an estimated US$74,182,080 in direct angler expenditures was spent on fishing trips to the study region, resulting in a total economic impact (including indirect and induced impacts) of $71,552,492 and 776 full-time jobs. These findings indicate the economic value of river and stream angling to the Texas economy.


Sign in / Sign up

Export Citation Format

Share Document