EMISSION CERTIFICATE TRADE AND COSTS UNDER REGIONAL BURDEN-SHARING REGIMES FOR A 2°C CLIMATE CHANGE CONTROL TARGET

2014 ◽  
Vol 05 (01) ◽  
pp. 1440001 ◽  
Author(s):  
T. KOBER ◽  
B. C. C. VAN DER ZWAAN ◽  
H. RÖSLER

In this article we explore regional burden-sharing regimes for the allocation of greenhouse gas emission reduction obligations needed to reach a 2°C long-term global climate change control target by performing an integrated energy-economy-climate assessment with the bottom–up TIAM-ECN model. Our main finding is that, under a burden-sharing scheme based on the allowed emissions per capita, the sum of merchandized carbon certificates yields about 2000 billion US$/yr worth of inter-regional trade around 2050, with China and Latin America the major buyers, respectively Africa, India, and other Asia the main sellers. Under a burden-sharing regime that aims at equal cost distribution, the aggregated amount of transacted carbon certificates involves less than 500 billion US$/yr worth of international trade by 2050, with China and other Asia representing the vast majority of selling capacity. Restrictions in the opportunities for international certificate trade can have significant short- to mid-term impact, with an increase in global climate policy costs of up to 20%.

Author(s):  
D. G. Galkin

The goal of the article is to work out recommendations aimed at providing sustainability of agriculture development on the level of national economy in conditions of changing climate. The agriculture development within the frames of traditional approach can be studied in two aspects: as a sector subjected to the global climate change impact; as a sector promoting climate change due to greenhouse gas emission. The authors showed that in regard to present trends scientific recommendations aimed at agriculture adaptation to climate changes are the most significant for Russia. On the basis of provided concepts they identified key lines in the said adaptation: to develop innovation connected with adaptation to consequences of climate changes; to upgrade the system of agro-insurance; to use methods of organic food production; to monitor and appraise adaptation of agriculture to climate changes; to introduce strategic planning of sustainable development and location of agricultural production. These lines should be realized on the basis of integrity, strategic orientation and scientific support of agricultural production. These lines can stabilize the level of key parameters of the sector in the long-term perspective.


2021 ◽  
Author(s):  
Danica Antonijevic ◽  
Shrijana Vaidya ◽  
Claudia Vincenz ◽  
Nicole Jurisch ◽  
Nathalia Pehle ◽  
...  

<p>When drained for e.g. agricultural use, natural peatlands turn from a net C sink to a net C source. It is therefore suggested that restoration of peatlands, despite of increasing CH<sub>4</sub> emissions, holds the potential to mitigate climate change by reducing their overall global warming potential. The time span required for this transition, however, is fairly unknown. Moreover, greenhouse gas emission measurements from peatlands are often limited to a couple of years only. This is problematic in so far, as most peatland ecosystems are in transitional stage due to restoration related disturbances (e.g. enhanced water table) and global climate change. This might affect GHG emissions in one way or another which emphasizes the necessity of longer-term observations to avoid misinterpretations and premature conclusions.        <br>Exemplary for that, we present 14 consecutive years of CH<sub>4</sub> flux measurements following restoration at a formerly long-term drained fen grassland within the Peene river catchment (near the town of Zarnekow: 53.52⁰N, 12.52⁰E). Restoration of peatland was done by simply opening the dike. Thus, no water table management was established and water table was strongly fluctuating.  CH<sub>4</sub> flux measurements were conducted at two sites (restored vs. non-restored) using non-flow-through non-steady-state (NFT-NSS) opaque chambers.  <br>Throughout the 14 years study period, distinct stages of an ecosystems transition, differing in their impact on measured CH<sub>4</sub> emissions, were observed. During the first two years of the measurement period directly following restoration in autumn 2004, an eutrophic shallow lake was formed. This development was accompanied by a fast vegetation shift from dying off cultivated grasses to submerged hydrophytes and helophytes and evidenced substantially increased CH<sub>4</sub> emissions. Since 2008, helophytes have gradually spread from the shore line into the established shallow lake especially during drying years. This process was only periodically delayed by exceptional inundation, such as in 2011, 2012 and 2015, and finally resulted in coverage of the measurement site in 2016 and 2017. While, especially the period between 2009 and 2015 showed exceptionally high CH<sub>4</sub> emissions, these decreased significantly after helophytes were established at the measurement site. Hence, CH<sub>4</sub> emissions only decreased after ten years transition following restoration and potentially reaching a new steady state.</p>


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


Author(s):  
Jiban Mani Poudel

In the 21st century, global climate change has become a public and political discourse. However, there is still a wide gap between global and local perspectives. The global perspective focuses on climate fluctuations that affect the larger region; and their analysis is based on long-term records over centuries and millennium. By comparison, local peoples’ perspectives vary locally, and local analyses are limited to a few days, years, decades and generations only. This paper examines how farmers in Kirtipur of Kathmandu Valley, Nepal, understand climate variability in their surroundings. The researcher has used a cognized model to understand farmers’ perception on weather fluctuations and climate change. The researcher has documented several eyewitness accounts of farmers about weather fluctuations which they have been observing in a lifetime. The researcher has also used rainfall data from 1970-2009 to test the accuracy of perceptions. Unlike meteorological analyses, farmers recall and their understanding of climatic variability by weather-crop interaction, and events associating with climatic fluctuations and perceptions are shaped by both physical visibility and cultural frame or belief system.DOI: http://dx.doi.org/10.3126/hn.v11i1.7200 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.30-34


Author(s):  
Robert A. Berner

The cycle of carbon is essential to the maintenance of life, to climate, and to the composition of the atmosphere and oceans. What is normally thought of as the “carbon cycle” is the transfer of carbon between the atmosphere, the oceans, and life. This is not the subject of interest of this book. To understand this apparently confusing statement, it is necessary to separate the carbon cycle into two cycles: the short-term cycle and the long-term cycle. The “carbon cycle,” as most people understand it, is represented in figure 1.1. Carbon dioxide is taken up via photosynthesis by green plants on the continents or phytoplankton in the ocean. On land carbon is transferred to soils by the dropping of leaves, root growth, and respiration, the death of plants, and the development of soil biota. Land herbivores eat the plants, and carnivores eat the herbivores. In the oceans the phytoplankton are eaten by zooplankton that are in turn eaten by larger and larger organisms. The plants, plankton, and animals respire CO2. Upon death the plants and animals are decomposed by microorganisms with the ultimate production of CO2. Carbon dioxide is exchanged between the oceans and atmosphere, and dissolved organic matter is carried in solution by rivers from soils to the sea. This all constitutes the shortterm carbon cycle. The word “short-term” is used because the characteristic times for transferring carbon between reservoirs range from days to tens of thousands of years. Because the earth is more than four billion years old, this is short on a geological time scale. As the short-term cycle proceeds, concentrations of the two principal atmospheric gases, CO2 and CH4, can change as a result of perturbations of the cycle. Because these two are both greenhouse gases—in other words, they adsorb outgoing infrared radiation from the earth surface—changes in their concentrations can involve global warming and cooling over centuries and many millennia. Such changes have accompanied global climate change over the Quaternary period (past 2 million years), although other factors, such as variations in the receipt of solar radiation due to changes in characteristics of the earth’s orbit, have also contributed to climate change.


Author(s):  
Michael B. McElroy

The discussion in chapter 2 addressed what might be described as a microview of the US energy economy— how we use energy as individuals, how we measure our personal consumption, and how we pay for it. We turn attention now to a more expansive perspective— the use of energy on a national scale, including a discussion of associated economic benefits and costs. We focus specifically on implications for emissions of the greenhouse gas CO2. If we are to take the issue of human- induced climate change seriously— and I do— we will be obliged to adjust our energy system markedly to reduce emissions of this gas, the most important agent for human- induced climate change. And we will need to do it sooner rather than later. This chapter will underscore the magnitude of the challenge we face if we are to successfully chart the course to a more sustainable climate- energy future. We turn later to strategies that might accelerate our progress toward this objective.We elected in this volume to focus on the present and potential future of the energy economy of the United States. It is important to recognize that the fate of the global climate system will depend not just on what happens in the United States but also to an increasing extent on what comes to pass in other large industrial economies. China surpassed the United States as the largest national emitter of CO2 in 2006. The United States and China together were responsible in 2012 for more than 42% of total global emissions. Add Russia, India, Japan, Germany, Canada, United Kingdom, South Korea, and Iran to the mix (the other members of the top 10 emitting countries ordered in terms of their relative contributions), and we can account for more than 60% of the global total. Given the importance of China to the global CO2 economy (more than 26% of the present global total and likely to increase significantly in the near term), I decided that it would be instructive to include here at least some discussion of the situation in China— to elaborate what the energy economies of China and the United States have in common, outlining at the same time the factors and challenges that set them apart.


Author(s):  
Irvin Alberto Mosquera ◽  
Luis Volnei Sudati Sagrilo ◽  
Paulo Maurício Videiro

Abstract This paper discusses the influence of the climate change in the long-term response of offshore structures. The case studied is a linear single-degree-of-freedom (SDOF) system under environmental load wave characterized by the JONSWAP spectrum. The wave parameter data used in the analyses were obtained from running the wind wave WaveWatch III with wind field input data derived from two Global Climate Models (GCMs): HadGEM2-ES and MRI-CGCM3 considering historical and future greenhouse emissions scenarios. The study was carried out for two locations: one in the North Atlantic and the other in Brazilian South East Coast. Environmental contours have been used to estimate the extreme long-term response. The results suggest that climate change would affect the structure response and its impact is highly depend on the structure location, the global climate model and the greenhouse emissions scenario selected.


2018 ◽  
Author(s):  
Martha M. Vogel ◽  
Jakob Zscheischler ◽  
Sonia I. Seneviratne

Abstract. The frequency and intensity of climate extremes is expected to increase in many regions due to anthropogenic climate change. In Central Europe extreme temperatures are projected to change more strongly than global mean temperatures and soil moisture-temperature feedbacks significantly contribute to this regional amplification. Because of their strong societal, ecological and economic impacts, robust projections of temperature extremes are needed. Unfortunately, in current model projections, temperature extremes in Central Europe are prone to large uncertainties. In order to understand and potentially reduce uncertainties of extreme temperatures projections in Europe, we analyze global climate models from the CMIP5 ensemble for the business-as-usual high-emission scenario (RCP8.5). We find a divergent behavior in long-term projections of summer precipitation until the end of the 21st century, resulting in a trimodal distribution of precipitation (wet, dry and very dry). All model groups show distinct characteristics for summer latent heat flux, top soil moisture, and temperatures on the hottest day of the year (TXx), whereas for net radiation and large-scale circulation no clear trimodal behavior is detectable. This suggests that different land-atmosphere coupling strengths may be able to explain the uncertainties in temperature extremes. Constraining the full model ensemble with observed present-day correlations between summer precipitation and TXx excludes most of the very dry and dry models. In particular, the very dry models tend to overestimate the negative coupling between precipitation and TXx, resulting in a too strong warming. This is particularly relevant for global warming levels above 2 °C. The analysis allows for the first time to substantially reduce uncertainties in the projected changes of TXx in global climate models. Our results suggest that long-term temperature changes in TXx in Central Europe are about 20 % lower than projected by the multi-model median of the full ensemble. In addition, mean summer precipitation is found to be more likely to stay close to present-day levels. These results are highly relevant for improving estimates of regional climate-change impacts including heat stress, water supply and crop failure for Central Europe.


2002 ◽  
Vol 50 (5) ◽  
pp. 497-514 ◽  
Author(s):  
Jacqueline E. Huntoon ◽  
Robert K. Ridky

2020 ◽  
Author(s):  
Edward A. Byers ◽  
Keywan Riahi ◽  
Elmar Kriegler ◽  
Volker Krey ◽  
Roberto Schaeffer ◽  
...  

<p>The assessment of long-term greenhouse gas emissions scenarios and societal transformation pathways is a key component of the IPCC Working Group 3 (WG3) on the Mitigation of Climate Change. A large scientific community, typically using integrated assessment models and econometric frameworks, supports this assessment in understanding both near-term actions and long-term policy responses and goals related to mitigating global warming. WG3 must systematically assess hundreds of scenarios from the literature to gain an in-depth understanding of long-term emissions pathways, across all sectors, leading to various levels of global warming. Systematic assessment and understanding the climate outcomes of each emissions scenario, requires coordinated processes which have developed over consecutive IPCC assessments. Here, we give an overview of the processes involved in the systematic assessment of long-term mitigation pathways as used in recent IPCC Assessments<sup>1</sup> and being further developed for the IPCC 6<sup>th</sup> Assessment Report (AR6). The presentation will explain how modelling teams can submit scenarios to AR6 and invite feedback to the process.</p><p>Following discussions amongst IPCC Lead Authors to define the scope of scenarios desired and variables requested, a call for scenarios to support AR6 was launched in September 2019. Modelling teams have registered and submitted scenarios through Autumn 2019 using a new and secure online submission portal, from which authorised Lead Authors can interrogate the scenarios interactively.</p><p>This analysis is underpinned by the open-source software pyam, a Python package specifically designed for analysis and visualisation of integrated assessment scenarios<sup>2</sup>. Submitted scenarios are automatically checked for errors and processed using a new climate assessment pipeline. The climate assessment involves infilling and harmonization<sup>3</sup> of emissions data, then the scenarios are processed through Simple Climate Models, using the OpenSCM framework<sup>4</sup>, to give probabilistic climate implications for each scenario – atmospheric concentrations, radiative forcing and global mean temperature. The climate assessment accounts for updated climate sensitivity estimates from CMIP6 and WG1,s scenarios are categorized according to climate outcomes and distinguish between timing and levels of net-negative emissions, emissions peak and temperature overshoot. Scenarios are also categorized by other indicators, for consistent use across WG3 chapters, such as: population and GDP; Primary and Final energy use; and shares of renewables, bioenergy and fossil fuels.</p><p>The automated framework also facilitates bolt-on analyses, such as estimating the population impacted by biophysical climate impacts<sup>5</sup>, and estimates of avoided damages with the social cost of carbon<sup>6</sup>.</p><p>Upon publication of the WG3 AR6 report, all scenario data used in the WG3 Assessment will be publicly available on a Scenario Explorer, an online tool for interrogating and visualizing the data that supports the report. In combination, this framework brings new levels of consistency, transparency and reproducibility to the assessment of scenarios in IPCC WG3 and will be a key resource for the climate community in understanding the main drivers of different transformation pathways.</p><ol><li>Huppmman et al 2018, Nature Climate Change</li> <li>Gidden and Huppmann, 2019, Journal of Open Source Software</li> <li>Gidden et al 2018 Environ. Model. Softw</li> <li>Nicholls et al 2020</li> <li>Byers et al 2018 Environmental Research Letters</li> <li>Ricke et al 2018 Nature Climate Change</li> </ol>


Sign in / Sign up

Export Citation Format

Share Document