SYNTHESIS AND HYDROGEN SENSING PROPERTIES OF CNT-ZnO NANOCOMPOSITE THIN FILMS

2013 ◽  
Vol 22 ◽  
pp. 478-482
Author(s):  
RISHI VYAS ◽  
SARLA SHARMA ◽  
PARUL GUPTA ◽  
K. SACHDEV ◽  
S. K. SHARMA

CNT-ZnO nanocomposite powders were synthesized by addition of carbon nanotubes (CNT) during the growth of ZnO nanoparticles using a wet-chemical method. These CNT-ZnO nanocomposites powder were then spin coated on corning glass substrates to obtain thin films which were characterized using X-ray diffraction, scanning electron microscopy and current voltage characteristics. Hydrogen sensing (50- 1000 ppm) carried out on pure and CNT-ZnO nanocomposites at operating temperature of 250 and 300°C in N2 atmosphere (0.4±0.03 mbar) revealed higher sensitivity in 2 wt.% CNT-ZnO nanocomposite thin film compared to the pure ZnO thin film.

2001 ◽  
Vol 15 (17n19) ◽  
pp. 769-773 ◽  
Author(s):  
M. GARCIA-ROCHA ◽  
A. CONDE-GALLARDO ◽  
I. HERNANDEZ-CALDERON ◽  
R. PALOMINO-MERINO

In this work we show the results on tile growth and optical characterization of TiO 2 thin films doped with Eu atoms. Eu:TiO2 films were grown at room temperature with different Eu concentrations by sol-gel on Si Corning glass substrates. A different crystalline structure is developed for the films deposited on Corning glass than those deposited on Si as observed from x-ray diffraction experiments. Room and low temperature photoluminescence (PL) was measured by using two different lines (325 and 442 nm) of a HeCd laser. A strong PL signal associated to the 5 D 0→7 F 2 transition from Eu +3 was observed. A better emission was obtained from those films deposited on Si substrates, Finally, the evolution of the PL signal is studied when the samples are annealed at different temperatures in O 2 atmosphere.


2019 ◽  
Vol 969 ◽  
pp. 433-438 ◽  
Author(s):  
Dattatraya K. Sonavane ◽  
S.K. Jare ◽  
M.A. Shaikh ◽  
R.V. Kathare ◽  
R.N. Bulakhe

Glass substrates are used to deposit thin films utilizing basic and value effective chemical bath deposition (CBD) technique. The films were prepared from the mixture as solutions of manganous acetate tetrahydrate [C4H6MnO44H2O] as a manganese source, thiourea [(H2 N) 2 CS] as a sulfur source and triethanolamine (TEA) [(HOC2H4)3N] as a complexing agent.In the present paper the deposition was successfully done at 60 °C temperature. The absorption properties and band gap energy were determined employing double beam spectrophotometer. The optical band gap value calculated from absorption spectra of MnS thin film is found to be about 3.1eV.The MnS thin film was structurally characterized by X-ray Diffraction (XRD). The MnS thin film was morphologically characterized by Scanning Electron Microscopy (SEM) and elemental analysis was performed using EDS to confirm the formation of MnS.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Savita Sharma ◽  
Monika Tomar ◽  
Nitin K. Puri ◽  
Vinay Gupta

Tungsten trioxide (WO3) thin films were deposited by Rf-magnetron sputtering onto Pt interdigital electrodes fabricated on corning glass substrates. NO2 gas sensing properties of the prepared WO3 thin films were investigated by incorporation of catalysts (Sn, Zn, and Pt) in the form of nanoclusters. The structural and optical properties of the deposited WO3 thin films have been studied by X-ray diffraction (XRD) and UV-Visible spectroscopy, respectively. The gas sensing characteristics of all the prepared sensor structures were studied towards 5 ppm of NO2 gas. The maximum sensing response of about 238 was observed for WO3 film having Sn catalyst at a comparatively lower operating temperature of 200°C. The possible sensing mechanism has been highlighted to support the obtained results.


2008 ◽  
Vol 1148 ◽  
Author(s):  
Yusaburo Ono ◽  
Yushi Kato ◽  
Yasuyuki Akita ◽  
Makoto Hosaka ◽  
Naoki Shiraishi ◽  
...  

AbstractWe investigated the fabrication of Si nanocrystals, including thin films, by annealing the SiO/C/SiO thin films in an Ar atmosphere. The SiO/C/SiO trilayered thin films were deposited on α-Al2O3 (0001), Si (111), or ITO-coated borosilicate glass substrates at room temperature by pulsed laser deposition using dual sintered SiO and graphite targets. The SiO/C/SiO thin films subjected to heat treatment at 500°C included nanocrystalline Si. Measurements by synchrotron radiation X-ray diffraction indicated the formation of Si nanocrystals having a size of 5–10 nm. Fourier transform infrared spectra showed that Si–O stretching and vibrational peak intensities of the as-deposited thin film decreased remarkably after annealing. The C layer in the SiO/C/SiO trilayered thin films is considered to play a role in enhancing the chemical reaction that produces Si nanocrystals through reduction of SiO during heat treatment. The annealed SiO/C-based thin films, including Si nanocrystals, exhibited photosensitive conduction behavior in current–voltage measurements.


2001 ◽  
Vol 697 ◽  
Author(s):  
Hisayuki Suematsu ◽  
Tsuyoshi Saikusa ◽  
Tsuneo Suzuki ◽  
Weihua Jiang ◽  
Kiyoshi Yatsui

AbstractThin films of titanium iron (TiFe) were prepared by a pulsed ion-beam evaporation (IBE) method. A pulsed ion beam of proton accelerated at 1 MV (peak) with a pulse width of 50 ns and a current of 70 kA was focused on TiFe alloy targets. Soda lime glass substrates were placed in front of the targets. Phases in the thin films were identified by X-ray diffraction (XRD). XRD results revealed that the thin films deposited on the glass substrates consist of a TiFe phase. Crystallized Ti-Fe thin films without oxides were successfully obtained. Surface roughness of the thin film was 0.16 m m.


2013 ◽  
Vol 795 ◽  
pp. 403-406 ◽  
Author(s):  
Nur Sa’adah Muhamad Sauki ◽  
Sukreen Hana Herman ◽  
Mohd Hanafi Ani ◽  
Mohamad Rusop

Zinc oxide (ZnO) thin films were deposited on teflon substrates by RF magnetron sputtering at different substrate temperature. The effect of substrate temperature on ZnO thin films electrical and structural properties were examined using current-voltage (I-V) measurement, and x-ray diffraction (XRD) It was found that the electrical conductivity and resistivity of the ZnO thin film deposited at 40°C was the highest and lowest intensity accordingly. This was supported by the crystalline quality of the films from the x-ray diffraction (XRD) results. The XRD pattern showed that the ZnO thin film deposited at 40°C has the highest intensity with the narrowest full-width-at-half-maximum indicating that the film has the highest quality compared to other thin film.


2005 ◽  
Vol 871 ◽  
Author(s):  
Cristobal Voz ◽  
Joaquim Puigdollers ◽  
Marta Fonrodona ◽  
Isidro Martin ◽  
Albert Orpell ◽  
...  

AbstractThe microstructure of pentacene thin films deposited by thermal evaporation is studied by X-ray diffraction. The transmittance of these films evidences different molecular orbital levels and their related excitonic states. Pentacene photodiodes have been also fabricated on ITO-coated glass substrates with aluminium top electrodes. The current voltage characteristics of such devices are discussed paying special attention to the strongly marked space-charge limited regime. This has been related to trapping in an exponential distribution of localised states in the gap of pentacene. The analysis of the characteristic offers valuable information about such distribution of traps. Finally, the external-quantum-efficiency of these photodiodes shows antibatic features, which evidence the importance of excitonic states in the photovoltaic conversion in pentacene.


2018 ◽  
Vol 15 (2) ◽  
pp. 227-233 ◽  
Author(s):  
Baghdad Science Journal

A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respectively. Hall measurements confirmed that the films are n-type. The NO2 sensing characteristics of the SnO2:WO3 sensors were studied with various temperatures and NO2 gas concentrations. Both thin film and bulk sensors showed maximum sensitivity at temperature of 250 oC. Thin film sensors showed enhanced response in comparison to that of pellets.


2014 ◽  
Vol 1675 ◽  
pp. 151-156 ◽  
Author(s):  
Carolina. J. Diliegros Godines ◽  
Rebeca Castanedo Pérez ◽  
Gerardo Torres Delgado ◽  
Orlando Zelaya Ángel

ABSTRACTTransparent conducting cadmium tin oxide (CTO) thin films were obtained from a mixture of CdO and SnO2 precursor solutions by the dip-coating sol-gel technique. The thin films studied in this work were made with 7 coats (∼200 nm) on corning glass and quartz substrates. Each coating was deposited at a withdrawal speed of 2 cm/min, dried at 100°C for 1 hour and then sintered at 550°C for 1 hour in air. In order to decrease the resistivity values of the films, these were annealed in a vacuum atmosphere and another set of films were annealed in an Ar/CdS atmosphere. The annealing temperatures (Ta) were 450°C, 500°C and 550°C, as well as 600°C and 650°C, when corning glass and quartz substrates were used, respectively. X-Ray diffraction (XRD) patterns of the films annealed in a vacuum showed that there is only the presence of CTO crystals for 450°C≤ Ta ≤ 600°C and CTO+SnO2 crystals for Ta=650°C. The films annealed in Ar/CdS atmosphere were only constituted of CTO crystals independent of the Ta. The minimum resistivity value obtained was ∼4 x 10-4 Ωcm (Rsheet= 20 Ω/□) for the films deposited on quartz and annealed at Ta=600°C under an Ar/CdS atmosphere. The films deposited on quartz showed the higher optical transmission (∼90%) with respect to the films deposited on corning glass substrates (∼85%) in the Uv-vis region. For their optical and electrical characteristics, these films are good candidates as transparent electrodes in solar cells.


2013 ◽  
Vol 284-287 ◽  
pp. 324-328
Author(s):  
Tao Hsing Chen ◽  
Tzu Yu Liao

This study utilizes radio frequency magnetron sputtering(RF-sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate, then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperature is 300, 500 and 550°C, respectively. Moreover, the effects of process parameters on resistivity and optical properties are investigated. The deposited rate, microstructure, thickness and Optical transmission of Ti:GZO thin film are performed. For example, the thicknesses of films were determined by -step profilometer. The crystalline characteristics of thin films were investigated by X-ray diffraction (XRD). Ga and Ti concentration in ZnO film were determined by energy dispersive X-ray spectroscopy (EDS). The electrical properties of the Ti:GZO thin films were measured by Four point probe. The optical properties of Ti:GZO thin films were examined using UV–vis spectrophotometer. The results show that the transmittance of Ti:GZO thin film exhibited an excellent transparency in the visible light field. The resistivity of Ti:GZO decrease with increasing annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document