Investigation of Friction and Wear Properties of Electroless Ni–P–Cu Coating Under Dry Condition

2016 ◽  
Vol 04 (04) ◽  
pp. 1640013 ◽  
Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kr. Barman ◽  
Prasanta Sahoo

This study presents the deposition and tribological characterization of electroless Ni–P–Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500[Formula: see text]C for 1[Formula: see text]h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.

2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850014 ◽  
Author(s):  
ARKADEB MUKHOPADHYAY ◽  
TAPAN KUMAR BARMAN ◽  
PRASANTA SAHOO

The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni–B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350[Formula: see text]C, 400[Formula: see text]C and 450[Formula: see text]C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100[Formula: see text]C, 300[Formula: see text]C and 500[Formula: see text]C are analyzed on a pin-on-disc setup. Heat treatment at 350[Formula: see text]C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100[Formula: see text]C is observed to be predominantly adhesive along with abrasion. While at 300[Formula: see text]C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100[Formula: see text]C and 300[Formula: see text]C for the coatings heat treated at 400[Formula: see text]C and 450[Formula: see text]C test temperature. The predominant wear mechanisms at 500[Formula: see text]C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.


2018 ◽  
Vol 70 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Hongjuan Yang ◽  
Lin Fu ◽  
Yanhua Liu ◽  
Weiji Qian ◽  
Bo Hu

Purpose This paper aims to investigate the delamination wear properties of a carbon strip in a carbon strip rubbing against a copper wire at the high-sliding speed (380 km/h) with or without electrical current. Design/methodology/approach The friction and wear properties of a carbon strip in a carbon strip rubbing against a copper wire are tested on the high-speed wear tester whose speed can reach up to 400 km/h. The test data have been collected by the high-speed data collector. The worn surfaces of the carbon strip are observed by the scanning electron microscope. Findings It was found that there was a significant increase of the delamination wear with the decrease of the normal load when the electric current is applied. The size of the flake-like peeling also increases with the decrease of normal load. The delamination wear extends gradually from the edge of the erosion pits to the surrounding area with the decrease of the normal load. However, the delamination wear never appears in the absence of electric current. It is proposed that the decreased normal load and the big electrical current are the major causes of the delamination wear of the carbon strip. Originality value The experimental test at high-sliding speed of 380 km/h was performed for the first time, and the major cause of the delamination was discovered in this paper.


2017 ◽  
Vol 53 (3) ◽  
pp. 327-332 ◽  
Author(s):  
M. Czagany ◽  
P. Baumli

In this study electroless Ni-P coatings were deposited on W302 steel substrates. The effects of bath pH and heat treatment at 400?C were investigated on the surface morphology, phase structure, phosphorus content, thickness and microhardness of the coatings. It was observed that both the phosphorus content and coating thickness are dependent on the bath pH. In an acidic/neutral bath, low and medium phosphorus coatings with thickness of 13.9-19.8 ?m were synthesized, while in an alkaline bath, high phosphorus, 4.8-5.8 ?m-thick coatings were formed. Coatings containing medium or high P seemed to be amorphous, while low P coatings had microcrystalline structures. Hardness was also dependent on the composition of the coating. After heat treatment, the structure of the coatings transformed into crystalline Ni with the precipitation of Ni3P phases, which resulted further increases in hardness.


Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present chapter aims to determine optimal tribo-testing condition for minimum coefficient of friction and wear depth of electroless Ni-P, Ni-P-W and Ni-P-Cu coatings under lubrication using grey relational analysis. Electroless Ni-P, Ni-P-W and Ni-P-Cu coatings are deposited on AISI 1040 steel substrates. They are heat treated at suitable temperatures to improve their hardness. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction techniques. Typical nodulated surface morphology is observed in the scanning electron micrographs of all the three coatings. Phase transformation on heat treating the deposits is captured through the use of X-Ray diffraction technique. Vicker's microhardness of the coatings in their as-deposited and heat treated condition is determined. Ni-P-W coatings are seen to exhibit the highest microhardness. Friction and wear tests under lubricated condition are carried out following Taguchi's experimental design principle. Finally, the predominating wear mechanism of the coatings is discussed.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Neha Singh ◽  
Sujeet K. Sinha

Abstract Epoxy with ultra-high molecular weight polyethylene (UHMWPE) and MoS2 fillers was coated on a bearing steel (SAE 52100). Frictional and wear properties of the coated samples in sliding contact were investigated on a pin-on-disc tribometer under a normal load of 10 N and a linear sliding speed of 1 m/s against a bearing steel ball. The optimized coating composition (72 wt% Epoxy + 7 wt% hardener + 18 wt% UHMWPE + 3 wt% MoS2) showed highly improved tribological properties compared to pure epoxy and other epoxy-based composites. There was 75% reduction in the coefficient of friction (COF) in the dry interfacial condition (COF reduced from 0.2 to 0.05) over pure epoxy and 80% reduction with grease as the lubricant. The specific wear-rate of the composite was lower by five orders of magnitude over that of pure epoxy. Other mechanical properties such as hardness, tensile strength, and Young's modulus of the composite showed increments of 86%, 121%, and 43%, respectively, with respect to those of pure epoxy. 2–3 wt% of MoS2 had drastic effects on improving strength and reducing friction and wear of the composites. For dry sliding, initial abrasive and adhesive wear mechanisms led to transfer film formation on the steel counterface, and the shearing was mainly within the transfer film. For the grease-lubricated case, a thin layer of grease helped in easy shearing, and the transfer film formation was avoided. This epoxy-based composite will have applications as tribological coatings for journal bearings.


Author(s):  
Prasanta Sahoo ◽  
Supriyo Roy

The present paper considers the comparative study of tribological characteristics of various electroless alloy coatings viz. Ni-P, Ni-P-W and Ni-P-Cu. The tribological behavior of these coatings depends on various parameters like load, speed, lubricant, chemical compositions and heat treatment temperature to a great extent. One of the main effects of heat treatment on these coatings is phosphide precipitation, which makes them suitable for anti-wear applications. The property of binary Ni-P can be further improved by depositing third particles electrolessly. The phase structure of the coatings depends on the amount of phosphorous and heat treatment temperature. The tribological behavior of heat treated samples reveals that Ni-P-W deposit shows higher coefficient of friction and lowest wear among these three types coatings. Very high tungsten concentration retard the phosphide precipitation, thus low concentration of tungsten and low heat treatment temperature produce better coating. In case of Ni-P-Cu, medium concentration of copper and medium heat treatment temperature produces better coating.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1005 ◽  
Author(s):  
Dong-Hui Wang ◽  
Sheng-Hui Xie ◽  
Hai-Peng Yang ◽  
Hai-Xia Qian ◽  
Xie-Rong Zeng

In bearing applications, the development of new materials has become a focus of scientific research in order to make bearing systems smaller and rotate more accurately. Bulk metallic glass (BMG), which has high strength, stiffness and resistance to corrosion, is becoming a promising candidate for bearing and shaft materials. When used as shafts, the friction feature of BMG needs to be evaluated comprehensively. In this work, the friction and wear properties of Ni-based, Zr-based, and Cu-based BMGs sliding against brass lubricated with lithium grease were investigated, using traditional bearing materials (GCr15 steel) as comparison. The results showed that the wear mechanism of the BMGs was primarily abrasive, supplemented by an adhesive wear behavior when sliding against brass plates, just like GCr15 steel. The wear loss of the friction pair (brass plates) increases when the applied normal load increases and the sliding speed decreases. Compared with GCr15 steel, BMGs exhibit better friction performance at low sliding speed, and Ni-based BMG always exhibits a smaller wear loss, especially under large load and low sliding speed. The wear loss of brass plates against Ni-based BMG pin is 24.3% lower than that against GCr15 steel under an applied load of 10 kg, which indicates that Ni-based BMG is an attractive bearing and shaft material for industrial application.


2017 ◽  
Vol 05 (03) ◽  
pp. 1750010 ◽  
Author(s):  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present study considers the tribological behavior and corrosion resistance of electroless Ni-B-W coatings deposited on AISI 1040 steel substrates. Coating is characterized using scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction technique. In as-deposited condition, coatings are found to be amorphous. On heat treatment, precipitation of crystalline Ni (1 1 1) and its borides take place. For as-deposited coating, the microhardness is obtained as [Formula: see text]759[Formula: see text]HV[Formula: see text] which increases to [Formula: see text]1181[Formula: see text]HV[Formula: see text] and [Formula: see text]1098[Formula: see text]HV[Formula: see text] when heat treated at 350[Formula: see text]C and 450[Formula: see text]C, respectively. Incorporation of W in Ni-B coating results in an increase of hardness by 89[Formula: see text]HV[Formula: see text] in as-deposited condition. Heat treatment also results in increase in crystallite size of Ni (1 1 1). Wear rate and coefficient of friction (COF) of the coatings are evaluated on a pin-on-disc setup under both dry and lubricated sliding conditions. Wear resistance is observed to improve on heat treatment with an increase in crystallite size while COF deteriorates. However, in as-deposited condition, wear rate and COF of Ni-B-W coatings improve by [Formula: see text]5 and [Formula: see text]3 times, respectively, compared with Ni-B coatings. Wear and friction performance of the coatings are enhanced under lubrication due to the columnar structure of the coatings that retain lubricants. Corrosion resistance of Ni-B-W coating in 3.5% NaCl solution gets improved on heat treatment.


2013 ◽  
Vol 795 ◽  
pp. 545-549
Author(s):  
M.M. Mohtar ◽  
Z.M. Ripin ◽  
Z.A. Ahmad

The study presents the effect of heat treatment on electroless N-P-Cg-SiC composite coated cast AlSi (ADC12) alloy. No significant changes are noted on the average surface roughness and surface morphology of the coating film with different heat treatment processes. The growth of the hard Ni3P phase in the electroless Ni-P-Cg-SiC composite coating after heat treatment at 400°C for one hour strongly enhance the micro hardness of the AlSi-alloy (ADC12) surface from originally 101HV to 689HV. However, the micro hardness of the cast AlSi-alloy substrate decreases form 100HV to 60HV.


Sign in / Sign up

Export Citation Format

Share Document