Tribological Studies of Epoxy Composites With UHMWPE and MoS2 Fillers Coated on Bearing Steel: Dry Interface and Grease Lubrication

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Neha Singh ◽  
Sujeet K. Sinha

Abstract Epoxy with ultra-high molecular weight polyethylene (UHMWPE) and MoS2 fillers was coated on a bearing steel (SAE 52100). Frictional and wear properties of the coated samples in sliding contact were investigated on a pin-on-disc tribometer under a normal load of 10 N and a linear sliding speed of 1 m/s against a bearing steel ball. The optimized coating composition (72 wt% Epoxy + 7 wt% hardener + 18 wt% UHMWPE + 3 wt% MoS2) showed highly improved tribological properties compared to pure epoxy and other epoxy-based composites. There was 75% reduction in the coefficient of friction (COF) in the dry interfacial condition (COF reduced from 0.2 to 0.05) over pure epoxy and 80% reduction with grease as the lubricant. The specific wear-rate of the composite was lower by five orders of magnitude over that of pure epoxy. Other mechanical properties such as hardness, tensile strength, and Young's modulus of the composite showed increments of 86%, 121%, and 43%, respectively, with respect to those of pure epoxy. 2–3 wt% of MoS2 had drastic effects on improving strength and reducing friction and wear of the composites. For dry sliding, initial abrasive and adhesive wear mechanisms led to transfer film formation on the steel counterface, and the shearing was mainly within the transfer film. For the grease-lubricated case, a thin layer of grease helped in easy shearing, and the transfer film formation was avoided. This epoxy-based composite will have applications as tribological coatings for journal bearings.

2014 ◽  
Vol 591 ◽  
pp. 81-84
Author(s):  
M. Pradeep ◽  
Packkirisamy Vignesh ◽  
M. Arun ◽  
M. Durairaj

Influence of surface roughness on coefficient of friction of Titanium coated R19 Steel is investigated in this paper using Pin on Disc Apparatus. Wear properties of R19 Steel are evaluated because it is widely used in making the rail wheel and rail roads over the years. Titanium coating of 100nm thickness was deposited on the R19 Steel by Electron Beam Gun Physical Vapor Deposition method. Wear and friction parameters were evaluated using Pin on Disc apparatus. The Surface morphology plays an important role in affecting the wear rate. Non-contact surface roughness tester was used to examine the surface texture and measure the surface roughness of the specimens. The test was carried out in a pin on disc apparatus for Normal Load of 15N, Sliding Velocity of 3m/s and Time 5 min. The texture and the roughness parameters of the surface affect the coefficient of friction. The experimental values of roughness parameters of uncoated and coated disc and its effect on coefficient of friction are compared and validated. Results show that the Coefficient of friction decreases with lower value of Ra. Lower values of frictional force and coefficient of friction results in lower wear rates.


Author(s):  
J. Quintelier ◽  
P. Samyn ◽  
P. De Baets ◽  
J. Degrieck

On a Pin-on-Disc test rig with composite disc and steel pin tribological experiments were done on pultruded glass fiber reinforced polymer matrix composites plates. The wear and frictional behavior strongly depends on the structure. Also the normal load plays an important role in the frictional behavior, which is of greater importance than the speed. The formation of a thin polymer film onto the wear track results in a lowering of the coefficient of friction with 20%.


2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Khai Wei Chua ◽  
Mohd Fadzli Bin Abdollah ◽  
Noor Ayuma Mat Tahir ◽  
Hilmi Amiruddin

This study investigates the effect of normal load on the frictional properties of palm kernel activated carbon-epoxy (PKAC-E) composite. The PKAC-E composite specimen was fabricated by hot compression molding method. The dry sliding test was performed by using a pin-on-disc tribometer at various normal loads, range from 5 – 100N. The sliding speed and distance were constant. All tests were performed at room temperature. It was found that the coefficient of friction decreases with normal load, though at 60N, friction coefficient increases slightly and remains almost invariant at about 0.04 with normal load. The main conclusion of this study is that PKAC-E composite has a potential for tribological material application but only limited at low normal load under unlubricated conditions.


Author(s):  
Rajaganapathy C ◽  
Vasudevan D

In this paper, an attempt was made, to evaluate the tribological performance of Jatropa oil with addition of nanoparticles, on wear reduction in Al 6082 and it was compared with SAE20W40 engine oil. Experiments were conducted with pure Jatropa oil with different weight percentage of TiO2 nanoparticles such as 0%, 0.1%, 0.3% and 0.5%. The coefficient of friction and specific wear rate of the Al specimens were found by using pin on disc tribo-meter as per ASTM G99 standards, at constant speed of 1m/s using different loads such as 20N, 40N and 60N. The experimental results indicated that the addition of TiO2 with Jatropa oil indicated good friction reduction and anti-wear properties, compared to SAE20W40 engine oil. The lubricant viscosity and thermal conductivity were measured using Redwood viscometer and Transient hot wire method. Surface analysis was done using scanning electron microscopy to the study surface morphology of pin material. Surface examination revealed that TiO2 Nanoparticles lead to smoother worn surfaces than commercial Engine oil SAE20W40.


2016 ◽  
Vol 04 (04) ◽  
pp. 1640013 ◽  
Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kr. Barman ◽  
Prasanta Sahoo

This study presents the deposition and tribological characterization of electroless Ni–P–Cu coatings deposited on AISI 1040 steel specimens. After deposition, coatings are heat treated at 500[Formula: see text]C for 1[Formula: see text]h. Surface morphology study of the coatings reveals its typical cauliflower like appearance. Composition study of the coatings using energy dispersive X-ray analysis indicates that the deposit lies in the high phosphorus range. The coatings undergo crystallization on heat treatment. A significant improvement in microhardness of the coatings is also observed on heat treatment due to the precipitation of hard crystalline phases. The heat-treated coatings are subjected to sliding wear tests on a pin-on-disc type tribo-tester under dry condition by varying the applied normal load, sliding speed and sliding duration. The coefficient of friction (COF) increases with an increase in the applied normal load while it decreases with an increase in the sliding speed. The wear depth on the other hand increases with an increase in applied normal load as well as sliding speed. The worn surface morphology mainly indicates fracture of the nodules.


Tribologia ◽  
2019 ◽  
Vol 288 (6) ◽  
pp. 47-56
Author(s):  
Jarosław Molenda ◽  
Remigiusz Michalczewski

The aim of the study was to investigate the effect of the addition of graphene dispersion on anti-wear properties of bionic lubricant compositions based on aqueous sodium hyaluronate solutions. Tribological tests were carried out using a SRV tester, enabling the tests to be carried out in conditions of linear oscillating movement of the bullet-shield type association in which the ball was made of aluminium oxide and the disc was made of bearing steel 100Cr6. For research, a 0.5% solution of sodium hyaluronate in water (composition BSS2) was chosen, which was the base to which the graphene additive was introduced. During the main stage of work, three lubricant compositions were tested, i.e., as well as BSS2 solution, into which 0.05% m/m or 0.1% m/m graphene oxide was introduced, respectively. The study allowed the observation of a clear anti-wear effect associated with the introduction of graphene preparations into the hyaluronan base, manifested in a change in the trend of the graph of the coefficient of friction over time. In addition, a reduction in the volume wear of friction node components was found. Based on the analysis of tribological research results, it was found that the anti-wear effect of the lubricant on the friction elements of the steel-ceramic material combination increases with increasing the content of the graphene preparation in the lubricant composition.


2017 ◽  
Vol 14 (3) ◽  
pp. 188-192
Author(s):  
Suraj R. ◽  
Jithish K.S.

Purpose This paper aims to present a comparative study of the wear properties of ferrous welded materials like EN8, EN9 and mild steel (MS). Design/methodology/approach The material is cut into specific dimension after hardfacing and is studied for the wear properties of the material. The wear testing is done on a pin-on-disc apparatus. The microhardness of the material is studied using the Vickers microhardness measuring apparatus. Findings The wear properties of ferrous welded materials like EN8, EN9 and MS are studied. It is found the MS has the least wear when compared to EN8 and EN9. The microhardness of MS is higher than EN8 and EN9, thus making it more wear-resistant than EN8 and EN9. The coefficient of friction in the dry sliding condition is found to be constant throughout the experiment. Research limitations/implications Major restriction is the amount of time required for use-wear analysis and replication experiments that are necessary to produce reliable results. These limitations mean that the analysis of total assemblages with the intention of producing specific results, especially of worked materials, is not feasible. Practical implications Generally, the complexity and rigour of the analysis depend primarily on the engineering needs and secondarily on the wear situation. It has been the author’s experience that simple and basic wear analyses, conducted in the proper manner, are often adequate in many engineering situations. Integral and fundamental to the wear analysis approach is the treatment of wear and wear behaviour as a system property. As a consequence, wear analysis is not limited to the evaluation of the effects of materials on wear behaviour. Wear analysis often enables the identification of nonmaterial solutions or nonmaterial elements in a solution to wear problems. For example, changes in or recommendations for contact geometry, roughness, tolerance and so on are often the results of a wear analysis. Originality/value The value of the work lies in the utility of the results obtained to researchers and users of the EN8, EN9 and EN24 material for their components.


2013 ◽  
Vol 423-426 ◽  
pp. 797-800 ◽  
Author(s):  
Tao Ding ◽  
Wen Jing Xuan ◽  
Yu Mei Li ◽  
Shu Fen Xiao

An experimental study on friction and wear properties of carbon strip rubbing against copper contact wire was carried out on a pin-on-disc frictional tester under electric current. The result indicates that the coefficient of friction slowly increases with increasing of electric current. The value of friction coefficient is low, generally not more than 0.125. The wear volume of pin specimen increases with increasing of electric current. The wear volume of pin specimen is very low, generally not more than 0.075g. Through observing the SEM morphology of worn specimens, it can be found that there are obvious pits of arc ablation and traces of melting metal on worn surface. Worn surfaces of the worn specimens are analyzed by an energy dispersive X-ray spectroscopy. It can be observed that the oxidation wear occurs in the frictional process due to arc erosion and significant temperature rise. Therefore the arc erosion and oxidation wear are a main wear mechanism accompanied by materials transferring in the process of electrical sliding friction.


2019 ◽  
Vol 8 (3) ◽  
pp. 4013-4018

Titanium grade 5 alloy is being very distinct because of light weight and higher strength. These alloys are extensively used in aerospace industries. Response of these Titanium alloys under different load level and speed level during contact is required to be studied. The literature survey indicates inadequate studies on effect of load and speed during relative motion. Experiments have been conducted using Pin-On-Disc test rig in laboratory to simulated field conditions. Two load levels of 1.5kg and 3kg and three speed levels of 500,1000 and 1500rpm were maintained during experiments. Pin surface have been studied under Scanning Electron Micrograph [SEM] for understanding wear behaviour. The coefficient of friction was found to be more sensitive to the speed of sliding. At speed of 1500 rpm, irrespective of normal load, two distinct sliding phases, i.e., phase I and phase II have been observed as sliding progressed. Oxidation of wear debris, at lower speed and phase I of sliding takes place


Sign in / Sign up

Export Citation Format

Share Document