Sub-0.1 µm Patterning Characteristics of Inorganic Thin Films by Focused-Ion-Beam Lithography

1998 ◽  
Vol 37 (Part 1, No. 12B) ◽  
pp. 6792-6796 ◽  
Author(s):  
Hyun-Yong Lee ◽  
Seung-Woo Paek ◽  
Hong-Bay Chung
1999 ◽  
Vol 594 ◽  
Author(s):  
R. Spolenak ◽  
C. A. Volkert ◽  
K. Takahashi ◽  
S. Fiorillo ◽  
J. Miner ◽  
...  

AbstractIt is well known that the mechanical properties of thin films depend critically on film thickness However, the contributions from film thickness and grain size are difficult to separate, because they typically scale with each other. In one study by Venkatraman and Bravman, Al films, which were thinned using anodic oxidation to reduce film thickness without changing grain size, showed a clear increase in yield stress with decreasing film thickness.We have performed a similar study on both electroplated and sputtered Cu films by using chemical-mechanical polishing (CMP) to reduce the film thickness without changing the grain size. Stress-temperature curves were measured for both the electroplated and sputtered Cu films with thicknesses between 0.1 and 1.8 microns using a laser scanning wafer curvature technique. The yield stress at room temperature was found to increase with decreasing film thickness for both sets of samples. The sputtered films, however, showed higher yield stresses in comparison to the electroplated films. Most of these differences can be attributed to the different microstructures of the films, which were determined by focused ion beam (FIB) microscopy and x-ray diffraction.


1989 ◽  
Vol 9 (1-4) ◽  
pp. 277-279 ◽  
Author(s):  
Takao Shiokawa ◽  
Pil Hyon Kim ◽  
Manabu Hamagaki ◽  
Tamio Hara ◽  
Yoshinobu Aoyagi ◽  
...  

2007 ◽  
Vol 18 (46) ◽  
pp. 465302 ◽  
Author(s):  
Ali Ozhan Altun ◽  
Jun-Ho Jeong ◽  
Jong-Joo Rha ◽  
Ki-Don Kim ◽  
Eung-Sug Lee

2006 ◽  
Vol 983 ◽  
Author(s):  
Todd Simpson ◽  
Ian V Mitchell

AbstractAperture arrays were fabricated in 1.0µm thick gold films supported on 20nm thick silicon nitride membranes. Lithographic milling strategies in gold were evaluated through the use of in-situ sectioning and high resolution SEM imaging with the UWO CrossBeam FIB/SEM. A successful strategy for producing a 250nm diameter hole with sidewalls approaching vertical is summarized.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 508 ◽  
Author(s):  
Stanislav Tiagulskyi ◽  
Roman Yatskiv ◽  
Hana Faitová ◽  
Šárka Kučerová ◽  
David Roesel ◽  
...  

We study the effect of thermal annealing on the electrical properties of the nanoscale p-n heterojunctions based on single n-type ZnO nanorods on p-type GaN substrates. The ZnO nanorods are prepared by chemical bath deposition on both plain GaN substrates and on the substrates locally patterned by focused ion beam lithography. Electrical properties of single nanorod heterojunctions are measured with a nanoprobe in the vacuum chamber of a scanning electron microscope. The focused ion beam lithography provides a uniform nucleation of ZnO, which results in a uniform growth of ZnO nanorods. The specific configuration of the interface between the ZnO nanorods and GaN substrate created by the focused ion beam suppresses the surface leakage current and improves the current-voltage characteristics. Further improvement of the electrical characteristics is achieved by annealing of the structures in nitrogen, which limits the defect-mediated leakage current and increases the carrier injection efficiency.


2006 ◽  
Vol 6 (11) ◽  
pp. 3619-3623
Author(s):  
Eung-Sug Lee ◽  
Jun-Ho Jeong ◽  
Ki-Don Kim ◽  
Young-Suk Sim ◽  
Dae-Geun Choi ◽  
...  

Two-dimensional (2-D) and three-dimensional (3-D) diamond-like carbon (DLC) stamps for ultraviolet nanoimprint lithography were fabricated with two methods: namely, a DLC coating process, followed by focused ion beam lithography; and two-photon polymerization patterning, followed by nanoscale-thick DLC coating. We used focused ion beam lithography to fabricate 70 nm deep lines with a width of 100 nm, as well as 70 nm deep lines with a width of 150 nm, on 100 nm thick DLC layers coated on quartz substrates. We also used two-photon polymerization patterning and a DLC coating process to successfully fabricate 200 nm wide lines, as well as 3-D rings with a diameter of 1.35 μm and a height of 1.97 μm, and a 3-D cone with a bottom diameter of 2.88 μm and a height of 1.97 μm. The wafers were successfully printed on an UV-NIL using the DLC stamps without an anti-adhesive layer. The correlation between the dimensions of the stamp's features and the corresponding imprinted features was excellent.


2006 ◽  
Vol 960 ◽  
Author(s):  
Koji Sato ◽  
Chiemi Ishiyama ◽  
Masato Sone ◽  
Yakichi Higo

ABSTRACTWe studied the effects of phosphorus (P) on Ni nanocrystalline morphology formed by focused ion beam (FIB) irradiation for Ni-P amorphous alloy thin films. The P content in the amorphous alloy was varied from 8 to 12 wt.%. The nanocrystals induced by the FIB irradiation for Ni-11.8, 8.9, 7.9 wt.% amorphous alloy had an f.c.c. structure and showed unique crystallographic orientation relationships to the geometry of the focused ion beam, that is, {111}f.c.c. parallel to the irradiated plane and <110>f.c.c. parallel to the projected ion beam direction, respectively. The Ni nanocrystals precipitated like aggregates with decreasing of the P content. These results represent that the P content does not affect crystallographic orientation relationships, while influences the precipitation distribution of Ni nanocrystals generated by the FIB irradiation.


Sign in / Sign up

Export Citation Format

Share Document