Towards an Integrated Vehicle Management System in DriveOS

2021 ◽  
Vol 20 (5s) ◽  
pp. 1-24
Author(s):  
Soham Sinha ◽  
Richard West

Modern automotive systems feature dozens of electronic control units (ECUs) for chassis, body and powertrain functions. These systems are costly and inflexible to upgrade, requiring ever increasing numbers of ECUs to support new features such as advanced driver assistance (ADAS), autonomous technologies, and infotainment. To counter these challenges, we propose DriveOS, a safe, secure, extensible, and timing-predictable system for modern vehicle management in a centralized platform. DriveOS is based on a separation kernel, where timing and safety-critical ECU functions are implemented in a real-time OS (RTOS) alongside non-critical software in Linux or Android. The system enforces the separation, or partitioning, of both software and hardware among different OSes. DriveOS runs on a relatively low-cost embedded PC-class platform, supporting multiple cores and hardware virtualization capabilities. Instrument cluster, in-vehicle infotainment and advanced driver assistance system services are implemented in a Yocto Linux guest, which communicates with critical real-time services via secure shared memory. The RTOS manages a real-time controller area network (CAN) interface that is inaccessible to Linux services except via well-defined and legitimate communication channels. In this work, we integrate three Qt-based services written for Yocto Linux, running in parallel with a real-time longitudinal controller task and multiple CAN bus concentrators, for vehicular sensor data processing and actuation. We demonstrate the benefits and performance of DriveOS with a hardware-in-the-loop CARLA simulation using a real car dataset.

2020 ◽  
Vol 10 (17) ◽  
pp. 5882
Author(s):  
Federico Desimoni ◽  
Sergio Ilarri ◽  
Laura Po ◽  
Federica Rollo ◽  
Raquel Trillo-Lado

Modern cities face pressing problems with transportation systems including, but not limited to, traffic congestion, safety, health, and pollution. To tackle them, public administrations have implemented roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. In the case of traffic sensor data not only the real-time data are essential, but also historical values need to be preserved and published. When real-time and historical data of smart cities become available, everyone can join an evidence-based debate on the city’s future evolution. The TRAFAIR (Understanding Traffic Flows to Improve Air Quality) project seeks to understand how traffic affects urban air quality. The project develops a platform to provide real-time and predicted values on air quality in several cities in Europe, encompassing tasks such as the deployment of low-cost air quality sensors, data collection and integration, modeling and prediction, the publication of open data, and the development of applications for end-users and public administrations. This paper explicitly focuses on the modeling and semantic annotation of traffic data. We present the tools and techniques used in the project and validate our strategies for data modeling and its semantic enrichment over two cities: Modena (Italy) and Zaragoza (Spain). An experimental evaluation shows that our approach to publish Linked Data is effective.


Author(s):  
Huda M. Abdul Abbas ◽  
Raad Farhood Chisab ◽  
Mohannad Jabbar Mnati

<span lang="EN-US">We are living in the 21<sup>st</sup> century, an era of acquiring necessity in one click. As we, all know that technology is continuously reviving to stay ahead of advancements taking place in this world of making things easier for mankind. Technology has been putting his part in introducing different projects as we have used the field programmable gate arrays (FPGAs) development board of low cost and programmable logic done by the new evolvable cyclone software is optimized for specific energy based on Altera Cyclone II (EP2C5T144) through which we can control the speed of any electronic device or any Motor Control IP product targeted for the fan and pump. Altera Cyclone FPGAs’ is a board through which we can monitor the speed and direction of the DC motor. As we know how to make understand, dynamic analog input using an A-to-D convertor and we know how to create pulse width modulation (PWM) output with FPGA. Therefore, by combining these two functions we can create an FPGA DC motor controller. Our paper is divided into three parts: First, all of us will attempt to imitate the issue and can try to look for its answer. Secondly, we will try to verify the solution for real-time. In addition, in the last step, we will verify the solution on the real-time measurements.</span>


Author(s):  
Francisco Vital Da Silva Júnior ◽  
Mônica Ximenes Carneiro Da Cunha ◽  
Marcílio Ferreira De Souza Júnior

Floods are responsible for a high number of human and material losses every year. Monitoring of river levels is usually performed with radar and pre-configured sensors. However, a major flood can occur quickly. This justifies the implementation of a real-time monitoring system. This work presents a hardware and software platform that uses Internet of Things (IoTFlood) to generate flood alerts to agencies responsible for monitoring by sending automatic messages about the situation of rivers. Research design involved laboratory and field scenarios, simulating floods using mockups, and later tested on the Mundaú River, state of Alagoas, Brazil, where flooding episodes have already occurred. As a result, a low-cost, modular and scalable IoT platform was achieved, where sensor data can be accessed through a web interface or smartphone, without the need for existing infrastructure at the site where the IOTFlood solution was installed using affordable hardware, open source software and free online services for the viewing of collected data.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3257 ◽  
Author(s):  
Akram Jebril ◽  
Aduwati Sali ◽  
Alyani Ismail ◽  
Mohd Rasid

As a possible implementation of a low-power wide-area network (LPWAN), Long Range (LoRa) technology is considered to be the future wireless communication standard for the Internet of Things (IoT) as it offers competitive features, such as a long communication range, low cost, and reduced power consumption, which make it an optimum alternative to the current wireless sensor networks and conventional cellular technologies. However, the limited bandwidth available for physical layer modulation in LoRa makes it unsuitable for high bit rate data transfer from devices like image sensors. In this paper, we propose a new method for mangrove forest monitoring in Malaysia, wherein we transfer image sensor data over the LoRa physical layer (PHY) in a node-to-node network model. In implementing this method, we produce a novel scheme for overcoming the bandwidth limitation of LoRa. With this scheme the images, which requires high data rate to transfer, collected by the sensor are encrypted as hexadecimal data and then split into packets for transfer via the LoRa physical layer (PHY). To assess the quality of images transferred using this scheme, we measured the packet loss rate, peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) index of each image. These measurements verify the proposed scheme for image transmission, and support the industrial and academic trend which promotes LoRa as the future solution for IoT infrastructure.


Author(s):  
J-X Wang ◽  
J Feng ◽  
X-J Mao ◽  
L Yang ◽  
B Zhou

An interactive user-friendly calibration and monitoring system is critical for the development of electronic control units (ECU). In this study, a controller area network (CAN) driver, CAN calibration protocol (CCP) driver, monitoring program, and calibration program in the ECU were designed with the assembly language. The inquiry mode was used in monitoring the program and the interrupt mode was used in the calibration program, which ensured the real-time, simultaneous communication and interruption for the main control program. Mirror memory and the random access memory (RAM) calibration technique were used to reduce the write and read accesses to ECU, and, with the mapping of calibration RAM, calibration parameters could be changed online and used instantly. An efficient database management was used to achieve an accurate dynamic link between PC and ECU. The present system provides reliable, accurate, and quick CAN communication between ECU and PC, with a baud rate up to 500K bit/s. It also provides a friendly, compatible, and flexible calibration interface, and the functions of online calibration and real-time monitoring. This system has been used successfully in high-pressure, common rail, electronically controlled diesel engines and pure electrical vehicles (after a small modification).


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4015
Author(s):  
Kang Liu ◽  
Qingyu You ◽  
Juan Wang ◽  
Xiqiang Xu ◽  
Pengcheng Shi ◽  
...  

This study developed a new cable-less seismograph system, which can transmit seismic data in real-time and automatically perform high-precision differential self-positioning. Combining the ZigBee technology with the high-precision differential positioning module, this new seismograph system utilized the wireless personal area network (WPAN) and real-time kinematic (RTK) technologies to improve its on-site performances and to make the field quality control (QC) and self-positioning possible. With the advantages of low-cost, good scalability, and good compatibility, the proposed new cable-less seismograph system can improve the field working efficiency and data processing capability. It has potential applications in noise seismology and mobile seismic monitoring.


Robotica ◽  
2001 ◽  
Vol 19 (6) ◽  
pp. 601-610 ◽  
Author(s):  
Jihong Lee ◽  
Insoo Ha

In this paper we propose a set of techniques for a real-time motion capture of a human body. The proposed motion capture system is based on low cost accelerometers, and is capable of identifying the body configuration by extracting gravity-related terms from the sensor data. One sensor unit is composed of 3 accelerometers arranged orthogonally to each other, and is capable of identifying 2 rotating angles of joints with 2 degrees of freedom. A geometric fusion technique is applied to cope with the uncertainty of sensor data. A practical calibration technique is also proposed to handle errors in aligning the sensing axis to the coordination axis. In the case where motion acceleration is not negligible compared with gravity acceleration, a compensation technique to extract gravity acceleration from the sensor data is proposed. Experimental results not only for individual techniques but also for human motion capturing with graphics are included.


2013 ◽  
Vol 579-580 ◽  
pp. 792-797
Author(s):  
Yan Wang ◽  
Zhong Da Yu ◽  
Chen Xing Bao ◽  
Dong Xiang Shao

In this paper, we realize a real-time communication based on wireless local area network (WIFI) and controller area network (CAN) bus and develop a distributed control system for an automated guided vehicle (AGV). The system consists of two levels: (1) communication between AGVs and main computer based on WIFI, (2) communicationg between control units of AGV based on CAN bus. A real-time operating system μC/OS-II was used to control time, which significantly reduces the time for program and improves development efficiency. Finally, a small-size distributed AGV controller is developed as the main control unit of AGV and a distributed I/O system is developed based on it.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3079
Author(s):  
André Glória ◽  
João Cardoso ◽  
Pedro Sebastião

Presently, saving natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. On this topic, the Internet of Things has been highlighted, with these solutions being characterized by offering robustness and simplicity, while being low cost. This paper presents the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, a mobile application that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. To adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration. Of the studied algorithms (Decision Trees, Random Forest, Neural Networks, and Support Vectors Machines) the one that obtained the best results was Random Forest, presenting an accuracy of 84.6%. Besides the ML solution, a method was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.


2020 ◽  
Vol 18 (4) ◽  
pp. 214-228
Author(s):  
Abdalla Eldesoky ◽  
Ahmed M. Kamel ◽  
M. Elhabiby ◽  
Hadia Elhennawy

The technique proposed in this research demonstrates a real time nonlinear data fusion solution based on extremely low-cost and grade inertial sensors for land vehicle navigation. Here, the utilized nonlinear multi-sensor data fusion (MSDF) is based on the combination between extremely low-cost micro electrical mechanical systems (MEMS) inertial, heading, pressure, and speed sensors in addition to satellite-based navigation system. The integrated navigation system fuses position and velocity states from the Global Positioning System (GPS), the velocity measurements from an odometer, heading angle observation from a magnetometer and navigation states from an inertial navigation system (INS). The implemented system performance is assessed through the post-processing of collected raw measurements and real time experimental work. The system that runs the real-time experiments is established on three connected platforms, two of them are based on a 32-bit ARMTM core and the third one is based 16-bit AVR ATMEL microcontroller. This microcontroller is connected to an on-board diagnostics (OBD) shield to collect the vehicle speed measurements. The raw data obtained from the integrated sensors is saved and post processed in MATLAB®. In normal conditions, the estimated position errors are reduced through the usage of INS/GPS integration with heading observation angle from a magnetometer. In GPS-denied environments, the integrated system uses the observations from INS, magnetometer in addition to the velocity from odometer to ensure a continuous and accurate navigation solution. A complementary filter (CF) is implemented to estimate and improve the pitch and roll angles calculations. In addition to that, an unscented Kalman filter (UKF) is used cascaded with the designed CF to complete the designed sensors fusion algorithm. Experimental results show that the designed MSDF can achieve a good level of accuracy and a continuous localization solution of a land vehicle in different GPS availability cases and can be implemented on the available in the market processors to be run in real time.


Sign in / Sign up

Export Citation Format

Share Document