Drop Impact Dynamics: Impact Force and Stress Distributions

2021 ◽  
Vol 54 (1) ◽  
Author(s):  
Xiang Cheng ◽  
Ting-Pi Sun ◽  
Leonardo Gordillo

Dynamic variables of drop impact such as force, drag, pressure, and stress distributions are key to understanding a wide range of natural and industrial processes. While the study of drop impact kinematics has been in constant progress for decades thanks to high-speed photography and computational fluid dynamics, research on drop impact dynamics has only peaked in the last 10 years. Here, we review how recent coordinated efforts of experiments, simulations, and theories have led to new insights on drop impact dynamics. Particularly, we consider the temporal evolution of the impact force in the early- and late-impact regimes, as well as spatiotemporal features of the pressure and shear-stress distributions on solid surfaces. We also discuss other factors, including the presence of water layers, air cushioning, and nonspherical drop geometry, and briefly review granular impact cratering by liquid drops as an example demonstrating the distinct consequences of the stress distributions of drop impact. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 54 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

In the initial stage of liquid-drop impact, the contact region expands faster than the wave speed in the liquid. This causes compressible behaviour in the liquid, and high transient pressures. High-velocity jetting results when the wave motion in the liquid overtakes the expanding contact edge and moves up the free surface of the drop. The detailed pressure fields in this early time history of impact have been calculated by Lesser ( Proc . R . Soc . Lond . 377, 289 (1981)) for both two and three-dimensional liquid masses and for targets of finite admittance. An important result is that the edge pressures exceed the central ‘water-hammer’ pressure 3ρ 0 CU i and at the time of shock-detachment approach ca . 3ρ 0 CU i . At this stage the edge pressures, for both spherical drops and two-dimensional liquid wedges, depend only on the impact velocity and the instantaneous angle between the liquid and solid surfaces. This suggests that the essential features of the early stage of liquid impact can be usefully studied by producing impacts with two-dimensional liquid wedges, and predicted data for pressures, shock angles and velocities are presented. Experiments are described for producing impacts with preformed shapes by using water-gelatine mixtures and observing the impact events with high-speed photography. The results confirm the main features of the model and give information on edge pressures, jetting, cavitation in the liquid and the effect of the admittance of the solid. The relevance of the results to the damage and erosion of materials subjected to liquid impact is discussed. In particular, it is possible to explain the apparently low damage-threshold of some materials, the form of damage and its development with repeated impact. The study highlights the importance of the detailed surface geometry in the region of contact.


A rotating arm apparatus capable of circumferential speeds up to 475 m/s (Mach 1.4) has been used to make quantitative measurements of the velocity and angle dependence of ram erosion for a wide range of materials. It has been possible to relate the mechanical properties of some materials with their rain erosion resistance. The behaviour of the drops during impact has been studied by high speed photography.


Author(s):  
Walter Thavarajah ◽  
Laura M. Hertz ◽  
David Z. Bushhouse ◽  
Chloé M. Archuleta ◽  
Julius B. Lucks

RNA is essential for cellular function: From sensing intra- and extracellular signals to controlling gene expression, RNA mediates a diverse and expansive list of molecular processes. A long-standing goal of synthetic biology has been to develop RNA engineering principles that can be used to harness and reprogram these RNA-mediated processes to engineer biological systems solving pressing global challenges. Recent advances in the field of RNA engineering are bringing this to fruition, enabling the creation of RNA-based tools to combat some of the most urgent public health crises. Specifically, new diagnostics using engineered RNAs are able to detect both pathogens and chemicals while generating an easily detectable fluorescent signal as an indicator. New classes of vaccines and therapeutics are also using engineered RNAs to target a wide range of genetic and pathogenic diseases. Here, we discuss the recent breakthroughs in RNA engineering enabling these innovations and examine how advances in RNA design promise to accelerate the impact of engineered RNA systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lennart Fries

For many years, food engineers have attempted to describe physical phenomena such as heat and mass transfer in food via mathematical models. Still, the impact and benefits of computer-aided engineering are less established in food than in most other industries today. Complexity in the structure and composition of food matrices are largely responsible for this gap. During processing of food, its temperature, moisture, and structure can change continuously, along with its physical properties. We summarize the knowledge foundation, recent progress, and remaining limitations in modeling food particle systems in four relevant areas: flowability, size reduction, drying, and granulation and agglomeration. Our goal is to enable researchers in academia and industry dealing with food powders to identify approaches to address their challenges with adequate model systems or through structural and compositional simplifications. With advances in computer simulation capacity, detailed particle-scale models are now available for many applications. Here, we discuss aspects that require further attention, especially related to physics-based contact models for discrete-element models of food particle systems. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Cody A. Freas ◽  
Ken Cheng

Animals navigate a wide range of distances, from a few millimeters to globe-spanning journeys of thousands of kilometers. Despite this array of navigational challenges, similar principles underlie these behaviors across species. Here, we focus on the navigational strategies and supporting mechanisms in four well-known systems: the large-scale migratory behaviors of sea turtles and lepidopterans as well as navigation on a smaller scale by rats and solitarily foraging ants. In lepidopterans, rats, and ants we also discuss the current understanding of the neural architecture which supports navigation. The orientation and navigational behaviors of these animals are defined in terms of behavioral error-reduction strategies reliant on multiple goal-directed servomechanisms. We conclude by proposing to incorporate an additional component into this system: the observation that servomechanisms operate on oscillatory systems of cycling behavior. These oscillators and servomechanisms comprise the basis for directed orientation and navigational behaviors. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
pp. 014459872110520
Author(s):  
Yabin Gao ◽  
Xin Xiang ◽  
Ziwen Li ◽  
Xiaoya Guo ◽  
Peizhuang Han

Hydraulic slotting has become one of the most common technologies adopted to increase permeability in low permeability in coal field seams. There are many factors affecting the rock breaking effects of water jets, among which the impact force cannot be ignored. To study the influencing effects of contact surface shapes on jet flow patterns and impact force, this study carried out experiments involving water jet impingement planes and boreholes under different pressure conditions. The investigations included numerical simulations under solid boundary based on gas–liquid coupling models and indoor experiments under high-speed camera observations. The results indicated that when the water jets impinged on different contact surfaces, obvious reflection flow occurred, and the axial velocity had changed through three stages during the development process. Moreover, the shapes of the contact surfaces, along with the outlet pressure, were found to have impacts on the angles and velocities of the reflected flow. The relevant empirical formulas were summarized according to this study's simulation results. In addition, the flow patterns and shapes of the contact surfaces were observed to have influencing effects on the impact force. An impact force model was established in this study based on the empirical formula, and the model was verified using both the simulation and experimental results. It was confirmed that the proposed model could provide important references for the optimization of the technical parameters water jet systems, which could provide theoretical support for the further intelligent and efficient transformation of coal mine drilling water jet technology.


Author(s):  
John M. Baumann ◽  
Molly S. Adam ◽  
Joel D. Wood

Spray drying is a versatile technology that has been applied widely in the chemical, food, and, most recently, pharmaceutical industries. This review focuses on engineering advances and the most significant applications of spray drying for pharmaceuticals. An in-depth view of the process and its use is provided for amorphous solid dispersions, a major, growing drug-delivery approach. Enhanced understanding of the relationship of spray-drying process parameters to final product quality attributes has made robust product development possible to address a wide range of pharmaceutical problem statements. Formulation and process optimization have leveraged the knowledge gained as the technology has matured, enabling improved process development from early feasibility screening through commercial applications. Spray drying's use for approved small-molecule oral products is highlighted, as are emerging applications specific to delivery of biologics and non-oral delivery of dry powders. Based on the changing landscape of the industry, significant future opportunities exist for pharmaceutical spray drying. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 12 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Samuel Walker

The Department of Justice's pattern-or-practice police reform program has been an unprecedented event in American policing, intervening in local and state law enforcement agencies as never before and requiring a sweeping package of reforms. The program has reached reform settlements with forty agencies, including twenty with judicially enforced consent decrees. Academic research on the program, however, has been fairly modest. Social scientists have largely focused on a few selected issues. There is no study of the full impact of the program on one agency, and there is no comprehensive study of the impact of the program as a whole. Evaluations of individual agencies have been generally favorable, although with backsliding in some agencies. This review argues that the combination of several major goals and the various elements of specific consent decree reforms have created a web of accountability that is unmatched by any previous police reform effort. Expected final online publication date for the Annual Review of Criminology, Volume 5 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Matthew C. Fisher ◽  
Frank Pasmans ◽  
An Martel

Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Mahesha M. Poojary ◽  
Marianne N. Lund

Protein is a major nutrient present in foods along with carbohydrates and lipids. Food proteins undergo a wide range of modifications during food production, processing, and storage. In this review, we discuss two major reactions, oxidation and the Maillard reaction, involved in chemical modifications of food proteins. Protein oxidation in foods is initiated by metal-, enzyme-, or light-induced processes. Food protein oxidation results in the loss of thiol groups and the formation of protein carbonyls and specific oxidation products of cysteine, tyrosine, tryptophan, phenylalanine, and methionine residues, such as disulfides, dityrosine, kynurenine, m-tyrosine, and methionine sulfoxide. The Maillard reaction involves the reaction of nucleophilic amino acid residues with reducing sugars, which yields numerous heterogeneous compounds such as α-dicarbonyls, furans, Strecker aldehydes, advanced glycation end-products, and melanoidins. Both protein oxidation and the Maillard reaction result in the loss of essential amino acids but may positively or negatively impact food structure and flavor. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document