Investigation of Strong Metallic Ta Reduction in ZrO2/Ta2O5 Multi-Laminate Layer Growth

2014 ◽  
Vol 61 (2) ◽  
pp. 21-25
Author(s):  
H. Cho ◽  
K. W. Park ◽  
J. H. Ahn ◽  
C. H. Park ◽  
H. J. Cho ◽  
...  
Keyword(s):  
2003 ◽  
Vol 780 ◽  
Author(s):  
P. Thomas ◽  
E. Nabighian ◽  
M.C. Bartelt ◽  
C.Y. Fong ◽  
X.D. Zhu

AbstractWe studied adsorption, growth and desorption of Xe on Nb(110) using an in-situ obliqueincidence reflectivity difference (OI-RD) technique and low energy electron diffraction (LEED) from 32 K to 100 K. The results show that Xe grows a (111)-oriented film after a transition layer is formed on Nb(110). The transition layer consists of three layers. The first two layers are disordered with Xe-Xe separation significantly larger than the bulk value. The third monolayer forms a close packed (111) structure on top of the tensile-strained double layer and serves as a template for subsequent homoepitaxy. The adsorption of the first and the second layers are zeroth order with sticking coefficient close to one. Growth of the Xe(111) film on the transition layer proceeds in a step flow mode from 54K to 40K. At 40K, an incomplete layer-by-layer growth is observed while below 35K the growth proceeds in a multilayer mode.


2018 ◽  
Vol 49 (15) ◽  
pp. 1445-1458
Author(s):  
Deheng Shi ◽  
Fenghui Zou ◽  
Zunlue Zhu ◽  
Jinfeng Sun

2018 ◽  
Author(s):  
Chun Haur Khoo

Abstract Driven by the cost reduction and miniaturization, Wafer Level Chip Scale Packaging (WLCSP) has experienced significant growth mainly driven by mobile consumer products. Depending on the customers or manufacturing needs, the bare silicon backside of the WLCSP may be covered with a backside laminate layer. In the failure analysis lab, in order to perform the die level backside fault isolation technique using Photon Emission Microscope (PEM) or Laser Signal Injection Microscope (LSIM), the backside laminate layer needs to be removed. Most of the time, this is done using the mechanical polishing method. This paper outlines the backside laminate removal method of WLCSP using a near infrared (NIR) laser that produces laser energy in the 1,064 nm range. This method significantly reduces the sample preparation time and also reduces the risk of mechanical damage as there is no application of mechanical force. This is an effective method for WLCSP mounted on a PCB board.


1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 306
Author(s):  
Kazuya Taira ◽  
Tomonori Waku ◽  
Yoshimichi Hagiwara

The control of ice growth inside channels of aqueous solution flows is important in numerous fields, including (a) cold-energy transportation plants and (b) the preservation of supercooled human organs for transplantation. A promising method for this control is to add a substance that influences ice growth in the flows. However, limited results have been reported on the effects of such additives. Using a microscope, we measured the growth of ice from one sidewall toward the opposite sidewall of a mini-channel, where aqueous solutions of sodium chloride and antifreeze protein flowed. Our aim was to considerably suppress ice growth by mixing the two solutes. Inclined interfaces, the overlapping of serrated interfaces, and interfaces with sharp and flat tips were observed in the cases of the protein-solution, salt-solution, and mixed-solution flows, respectively. In addition, it was found that the average interface velocity in the case of the mixed-solution flow was the lowest and decreased by 64% compared with that of pure water. This significant suppression of the ice-layer growth can be attributed to the synergistic effects of the ions and antifreeze protein on the diffusion of protein.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 621
Author(s):  
Aleksi Laukka ◽  
Eetu-Pekka Heikkinen ◽  
Timo Fabritius

Utilising the oxyfuel practice for CH4-fuelled combustion has positive effects on the emissions, efficiency and cost of high temperature furnace practices. However, especially in older installations, oxyfuel usage requires retrofitting and alters the atmosphere in which the oxidation of the steel occurs, when compared to using air as the oxidiser. Stainless steel slab oxide growth during reheating was studied in different atmospheres. The simulated post-burn atmospheres from oxyfuel, lean oxyfuel and air-fuel practices were used to compare oxide-scale layer growth and morphology during simulated typical AISI 304 stainless steel slab reheating prior to hot rolling. Thermogravimetric measurements, glow discharge optical emission spectrometer (GDOES) and field-emission scanning electron microscope energy dispersive X-ray (FESEM-EDS) methodology were applied to discern differences between oxide growth and inner oxide layer morphology between the three practices. Switching from air to oxyfuel practice at a single temperature had the same increasing effect on the scale formation amount as a 25 °C temperature increase in air atmosphere. Inner oxide layer depth profiling revealed C, Si and Ni to be the main elements that differed between temperatures and atmospheres. A morphology study showed Si and Ni behaviour to be linked to breakaway oxidation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document