Vasopressin-mediated mitogenic signaling in intestinal epithelial cells

2002 ◽  
Vol 282 (3) ◽  
pp. C434-C450 ◽  
Author(s):  
Terence Chiu ◽  
Steven S. Wu ◽  
Chintda Santiskulvong ◽  
Pisit Tangkijvanich ◽  
Hal F. Yee ◽  
...  

The role of G protein-coupled receptors and their ligands in intestinal epithelial cell signaling and proliferation is poorly understood. Here, we demonstrate that arginine vasopressin (AVP) induces multiple intracellular signal transduction pathways in rat intestinal epithelial IEC-18 cells via a V1A receptor. Addition of AVP to these cells induces a rapid and transient increase in cytosolic Ca2+concentration and promotes protein kinase D (PKD) activation through a protein kinase C (PKC)-dependent pathway, as revealed by in vitro kinase assays and immunoblotting with an antibody that recognizes autophosphorylated PKD at Ser916. AVP also stimulates the tyrosine phosphorylation of the nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinase phosphorylation at Tyr418, indicative of Src activation. AVP induces extracellular signal-related kinase (ERK)-1 (p44mapk) and ERK-2 (p42mapk) activation, a response prevented by treatment with mitogen-activated protein kinase kinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors (GF-I and Ro-31-8220), depletion of Ca2+ (EGTA and thapsigargin), selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or the selective Src family kinase inhibitor PP-2. Furthermore, AVP acts as a potent growth factor for IEC-18 cells, inducing DNA synthesis and cell proliferation through ERK-, Ca2+-, PKC-, EGFR tyrosine kinase-, and Src-dependent pathways.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2211
Author(s):  
Thitinan Aiebchun ◽  
Panupong Mahalapbutr ◽  
Atima Auepattanapong ◽  
Onnicha Khaikate ◽  
Supaphorn Seetaha ◽  
...  

Epidermal growth factor receptor (EGFR), overexpressed in many types of cancer, has been proved as a high potential target for targeted cancer therapy due to its role in regulating proliferation and survival of cancer cells. In the present study, a series of designed vinyl sulfone derivatives was screened against EGFR tyrosine kinase (EGFR-TK) using in silico and in vitro studies. The molecular docking results suggested that, among 78 vinyl sulfones, there were eight compounds that could interact well with the EGFR-TK at the ATP-binding site. Afterwards, these screened compounds were tested for the inhibitory activity towards EGFR-TK using ADP-Glo™ kinase assay, and we found that only VF16 compound exhibited promising inhibitory activity against EGFR-TK with the IC50 value of 7.85 ± 0.88 nM. In addition, VF16 showed a high cytotoxicity with IC50 values of 33.52 ± 2.57, 54.63 ± 0.09, and 30.38 ± 1.37 µM against the A431, A549, and H1975 cancer cell lines, respectively. From 500-ns MD simulation, the structural stability of VF16 in complex with EGFR-TK was quite stable, suggesting that this compound could be a novel small molecule inhibitor targeting EGFR-TK.


2008 ◽  
Vol 413 (3) ◽  
pp. 429-436 ◽  
Author(s):  
Yan Zeng ◽  
Heidi Sankala ◽  
Xiaoxiao Zhang ◽  
Paul R. Graves

Ago (Argonaute) proteins are essential effectors of RNA-mediated gene silencing. To explore potential regulatory mechanisms for Ago proteins, we examined the phosphorylation of human Ago2. We identified serine-387 as the major Ago2 phosphorylation site in vivo. Phosphorylation of Ago2 at serine-387 was significantly induced by treatment with sodium arsenite or anisomycin, and arsenite-induced phosphorylation was inhibited by a p38 MAPK (mitogen-activated protein kinase) inhibitor, but not by inhibitors of JNK (c-Jun N-terminal kinase) or MEK [MAPK/ERK (extracellular-signal-regulated kinase) kinase]. MAPKAPK2 (MAPK-activated protein kinase-2) phosphorylated bacterially expressed full-length human Ago2 at serine-387 in vitro, but not the S387A mutant. Finally, mutation of serine-387 to an alanine residue or treatment of cells with a p38 MAPK inhibitor reduced the localization of Ago2 to processing bodies. These results suggest a potential regulatory mechanism for RNA silencing acting through Ago2 serine-387 phosphorylation mediated by the p38 MAPK pathway.


1994 ◽  
Vol 303 (2) ◽  
pp. 455-460 ◽  
Author(s):  
B L Oliver ◽  
R I Sha'afi ◽  
J J Hajjar

The small intestinal crypt cell line (IEC-6) is an undifferentiated, untransformed, mitotically active cell used in this study to determine the effect of transforming growth factor-alpha (TGF-alpha) on tyrosine phosphorylation levels of cellular proteins. Thymidine incorporation increased maximally after addition of 2 ng/ml TGF-alpha for 24 h. At the same dose, TGF-alpha induced the tyrosine phosphorylation of proteins with approximate molecular masses of 42, 44, 52, 80, 150 and 175 kDa as shown by Western blots treated with anti-phosphotyrosine antibody. The most intense phosphorylation was seen in the 42 kDa (p42) and 44 kDa (p44) proteins, which were identified as two isoforms of microtubule-associated protein kinase (MAPK). This phosphorylation was seen as early as 5 min post stimulation and was dose dependent. Both p42 and p44 were found in the nucleus after stimulation, although a basal level of unphosphorylated protein was present before stimulation. The observed tyrosine phosphorylation of p42 and p44 was inhibited by genistein, a tyrosine kinase inhibitor, and tyrphostin 23, an epidermal growth factor receptor tyrosine kinase inhibitor. We conclude that MAPK is tyrosine phosphorylated in response to TGF-alpha stimulation of IEC-6 cells.


Sign in / Sign up

Export Citation Format

Share Document