Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation

2008 ◽  
Vol 295 (1) ◽  
pp. C213-C220 ◽  
Author(s):  
Fei Wang ◽  
Qiang Tong

PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPα, and both are involved in the regulation of adipogenesis, we investigated whether PU.1 plays a role in the regulation of adipocyte differentiation. Our data indicate that PU.1 is expressed in white adipose tissue. PU.1 protein can also be detected in cultured 3T3-L1 adipocytes. Forced expression of PU.1 in 3T3-L1 cells inhibits adipocyte differentiation, whereas deletion of the transactivation domain of PU.1 abolishes this effect. The inhibition of adipocyte differentiation by PU.1 is achieved, at least in part, through repression of the transcriptional activity of C/EBPα and C/EBPβ. Furthermore, GATA-2 and PU.1 have an additive inhibitory effect on C/EBP transactivation and adipogenesis. Finally, the expression of PU.1 is increased in white adipose of obese mice.

2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ian Edward Gentle ◽  
Isabel Moelter ◽  
Mohamed Tarek Badr ◽  
Konstanze Döhner ◽  
Michael Lübbert ◽  
...  

AbstractMutations in the transcription factor C/EBPα are found in ~10% of all acute myeloid leukaemia (AML) cases but the contribution of these mutations to leukemogenesis is incompletely understood. We here use a mouse model of granulocyte progenitors expressing conditionally active HoxB8 to assess the cell biological and molecular activity of C/EBPα-mutations associated with human AML. Both N-terminal truncation and C-terminal AML-associated mutations of C/EBPα substantially altered differentiation of progenitors into mature neutrophils in cell culture. Closer analysis of the C/EBPα-K313-duplication showed expansion and prolonged survival of mutant C/EBPα-expressing granulocytes following adoptive transfer into mice. C/EBPα-protein containing the K313-mutation further showed strongly enhanced transcriptional activity compared with the wild-type protein at certain promoters. Analysis of differentially regulated genes in cells overexpressing C/EBPα-K313 indicates a strong correlation with genes regulated by C/EBPα. Analysis of transcription factor enrichment in the differentially regulated genes indicated a strong reliance of SPI1/PU.1, suggesting that despite reduced DNA binding, C/EBPα-K313 is active in regulating target gene expression and acts largely through a network of other transcription factors. Strikingly, the K313 mutation caused strongly elevated expression of C/EBPα-protein, which could also be seen in primary K313 mutated AML blasts, explaining the enhanced C/EBPα activity in K313-expressing cells.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 253 ◽  
Author(s):  
Yu-Sheng Chen ◽  
Hsuan-Miao Liu ◽  
Tzung-Yan Lee

Obesity has been shown to play a role in the pathogenesis of several forms of metabolic syndrome, including non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. Ursodeoxycholic acid (UDCA) has been shown to possess antioxidant and anti-inflammatory properties and prevents mitochondrial dysfunction in the progression of obesity-associated diseases. The aim of the study was to evaluate the mechanisms of UDCA during obesity-linked hepatic mitochondrial dysfunction and obesity-associated adipose tissue macrophage-induced inflammation in obese mice. UDCA significantly decreased lipid droplets, reduced free fatty acids (FFA) and triglycerides (TG), improved mitochondrial function, and enhanced white adipose tissue browning in ob/ob mice. This is associated with increased hepatic energy expenditure, mitochondria biogenesis, and incorporation of bile acid metabolism (Abca1, Abcg1 mRNA and BSEP, FGFR4, and TGR5 protein). In addition, UDCA downregulated NF-κB and STAT3 phosphorylation by negative regulation of the expression of SOCS1 and SOCS3 signaling. These changes were accompanied by decreased angiogenesis, as shown by the downregulation of VEGF, VCAM, and TGF-βRII expression. Importantly, UDCA is equally effective in reducing whole body adiposity. This is associated with decreased adipose tissue expression of macrophage infiltration (CD11b, CD163, and CD206) and lipogenic capacity markers (lipofuscin, SREBP-1, and CD36). Furthermore, UDCA significantly upregulated adipose browning in association with upregulation of SIRT-1-PGC1-α signaling in epididymis adipose tissue (EWAT). These results suggest that multi-targeted therapies modulate glucose and lipid biosynthesis fluxes, inflammatory response, angiogenesis, and macrophage differentiation. Therefore, it may be suggested that UDCA treatment may be a novel therapeutic agent for obesity.


Endocrine ◽  
2016 ◽  
Vol 55 (3) ◽  
pp. 786-798 ◽  
Author(s):  
Francielle Graus-Nunes ◽  
Tamiris Lima Rachid ◽  
Felipe de Oliveira Santos ◽  
Sandra Barbosa-da-Silva ◽  
Vanessa Souza-Mello

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3356 ◽  
Author(s):  
Weiyao Liao ◽  
Xiaohan Yin ◽  
Qingrong Li ◽  
Hongmin Zhang ◽  
Zihui Liu ◽  
...  

Promoting the browning of white fat may be a potential means of combating obesity. Therefore, in this study, we investigated the effect of resveratrol (RES) on the body weight and browning of white fat in high-fat diet (HFD)-induced obese mice and the potential associated mechanism in vivo. Eight-week-old male mice were randomized to receive different treatments: (1), chow without any additional treatment (chow); (2), chow plus 0.4% resveratrol (chow-RES); (3), HFD without any additional treatment (HFD); and (4), HFD plus 0.4% resveratrol (HFD-RES). After 4 weeks of feeding, additional 8-week-old male recipient mice were randomly allocated to the following 4 treatments: (5), HFD and received feces from chow-fed mice; (6), HFD and received feces from chow-RES-fed mice; (7), HFD and received feces from HFD-fed mice; and (8), HFD and received feces from HFD-RES-fed mice. RES treatment significantly inhibited increases in fat accumulation, promoted the browning of white adipose tissue (WAT) and alleviated gut microbiota dysbiosis in HFD-fed mice. Subsequent analyses showed that the gut microbiota remodeling induced by resveratrol had a positive role in WAT browning, and sirtuin-1 (Sirt1) signaling appears to be a key component of this process. Overall, the results show that RES may serve as a potential intervention to reduce obesity by alleviating dysbiosis of the gut microbiota.


2002 ◽  
Vol 361 (3) ◽  
pp. 629-633 ◽  
Author(s):  
Makoto NISHIZUKA ◽  
Tomoko TSUCHIYA ◽  
Tsutomu NISHIHARA ◽  
Masayoshi IMAGAWA

Using a subtraction method, we have isolated genes that are induced early in the differentiation of mouse 3T3-L1 preadipocyte cells into adipocytes. These include the genes encoding transcription factors and signalling proteins, as well as unknown genes. Bach1, a transcription factor, and ARA70, a cofactor, were rapidly induced during differentiation. The induction of these two genes was observed only in growth-arrested 3T3-L1 cells, and not in proliferating cells. In NIH-3T3 cells, no induction was observed under either set of conditions. These results strongly indicate that Bach1 and ARA70 have valuable roles at the onset of adipocyte differentiation.


2011 ◽  
Vol 300 (5) ◽  
pp. E877-E885 ◽  
Author(s):  
Qing He ◽  
Zhanguo Gao ◽  
Jun Yin ◽  
Jin Zhang ◽  
Zhong Yun ◽  
...  

The transcription factor HIF-1α activity is increased in adipose tissue to contribute to chronic inflammation in obesity. However, its upstream and downstream events remain to be characterized in adipose tissue in obesity. We addressed this issue by investigating adipocyte HIF-1α activity in response to obesity-associated factors, such as adipogenesis, insulin, and hypoxia. In adipose tissue, both HIF-1α mRNA and protein were increased by obesity. The underlying mechanism was investigated in 3T3-L1 adipocytes. HIF-1α mRNA and protein were augmented by adipocyte differentiation. In differentiated adipocytes, insulin further enhanced HIF-1α in both levels. Hypoxia enhanced only HIF-1α protein, not mRNA. PI3K and mTOR activities are required for the HIF-1α expression. Function of HIF-1α protein was investigated in the regulation of VEGF gene transcription. ChIP assay shows that HIF-1α binds to the proximal hypoxia response element in the VEGF gene promoter, and its function is inhibited by a corepressor composed of HDAC3 and SMRT. These observations suggest that of the three obesity-associated factors, all of them are able to augment HIF-1α protein levels, but only two (adipogenesis and insulin) are able to enhance HIF-1α mRNA activity. Adipose tissue HIF-1α activity is influenced by multiple signals, including adipogenesis, insulin, and hypoxia in obesity. The transcriptional activity of HIF-1α is inhibited by HDAC3-SMRT corepressor in the VEGF gene promoter.


Bone ◽  
2018 ◽  
Vol 115 ◽  
pp. 68-82 ◽  
Author(s):  
J.A.C. Guedes ◽  
J.V. Esteves ◽  
M.R. Morais ◽  
T.M. Zorn ◽  
D.T. Furuya

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 1209-1209
Author(s):  
Hanna Davis ◽  
Mandana Pahlavani ◽  
Yujiao Zu ◽  
Latha Ramalingam ◽  
Shane Scoggin ◽  
...  

Abstract Objectives Obesity is a global epidemic and complex disease associated with an expansion of white adipose tissue (WAT). Obesity is accompanied by chronic low-grade inflammation, characterized by elevated levels of secreted pro-inflammatory cytokines and M1 macrophage infiltration into WAT. Eicosapentaenoic acid (EPA), a long-chain omega-3 polyunsaturated fatty acid, has been reported to have anti-obesity and anti-inflammatory properties. Moreover, we previously showed that EPA dose-dependently improved glucose intolerance, and inflammation in diet-induced obese mice. The objective of this study is to further determine mechanisms underlying these metabolic protective effects of EPA in epididymal WAT (e-WAT). Methods Male B6 mice were fed a HF diet (45% kcal fat) or a HF diet supplemented with 9, 18, or 36 g/kg of EPA-enriched fish oil (EPA 9, 18 or 36) for 14 weeks. We performed histological assessments in eWAT to determine adipocyte size; and measure macrophage infiltration by immunohistochemistry using galectin-3. RNA was isolated from eWAT for RNA sequencing and gene expression analyses. Data were analyzed using GraphPad Prism software. Results EPA36-fed mice had significantly lower body weight and fat percentage, compared to HF (P < 0.05). In addition, EPA18 and 36 significantly decreased weight of e-WAT (P < 0.05) and increased glucose clearance compared to HF (P < 0.05). Moreover, all EPA doses had smaller adipocytes (P < 0.05). Compared to HF, EPA18 and 36 significantly reduced macrophage infiltration in e-7.43 fold, respectively. Consistent with these changes, EPA18 and 36 reduced the mRNA levels of HF-induced inflammatory markers, including arachidonate 5-lipoxygenase (Alox5) and leukotriene B4 receptor (Ltb4r) compared to HF (P < 0.05). RNA Seq analyses revealed that EPA18 attenuated HF-induced inflammation in part by up-regulating cyclic AMP (cAMP)-dependent protein kinase A (PKA) signaling pathways and down-regulating triggering receptor expressed on myeloid cells 1 (TREM1) signaling. Conclusions EPA dose-dependently ameliorated HF-induced obesity and inflammation by reducing adipocyte size and macrophage infiltration and modulating pro- and anti-inflammatory pathways in e-WAT. These effects were achieved at human equivalent doses, that are currently prescribed for reducing triglycerides. Funding Sources USDA NIFA NIH.


Sign in / Sign up

Export Citation Format

Share Document