scholarly journals Peroxynitrite induces apoptosis of HL-60 cells by activation of a caspase-3 family protease

1998 ◽  
Vol 274 (4) ◽  
pp. C855-C860 ◽  
Author(s):  
King-Teh Lin ◽  
Ji-Yan Xue ◽  
Marie C. Lin ◽  
Eric G. Spokas ◽  
Frank F. Sun ◽  
...  

Apoptosis is an active process critical for the homeostasis of organisms. Enzymes of the caspase family are responsible for executing this process. We have previously shown that peroxynitrite (ONOO−), a biological product generated from the interaction of nitric oxide and superoxide, induces apoptosis of HL-60 cells. The aim of this study was to elucidate the mechanisms involved in the execution process of peroxynitrite-induced apoptosis. Proteolytic cleavage of poly(ADP-ribose) polymerase, an indication of caspase-3 family protease activation and an early biochemical event accompanying apoptosis, was observed in a time-dependent manner during peroxynitrite-induced apoptosis of HL-60 cells. Activation of caspase-3 during peroxynitrite-induced apoptosis was substantiated by monitoring proteolysis of the caspase-3 proenzyme and by measuring caspase-3 activity with a fluorogenic substrate. Furthermore, pretreatment of HL-60 cells with N-acetyl-Asp-Glu-Val-Asp-aldehyde, a specific inhibitor of caspase-3, but not N-acetyl-Tyr-Val-Ala-Asp-aldehyde, a specific inhibitor of caspase-1, decreased peroxynitrite-induced apoptosis. These results suggest that the activation of a caspase-3 family protease is essential for initiating the execution process of peroxynitrite-induced apoptosis of HL-60 cells.

2000 ◽  
Vol 20 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Kamarajan ◽  
Chuck C.-K. Chao

Recently, apoptosis (genetically programmed cell death) induced by UV hasbeen documented in some cell culture models. However, the significance ofapoptosis in UV-induced cytotoxicity and resistance is uncertain. In thisstudy, we investigated the induction of apoptosis in HeLa cells and itsrole in acquired UV-resistance. The membrane receptor Fas was induced toassembly, and its immediate downstream target, caspase-8, was induced byUV in a dose- and time-dependent manner. Caspase-10, another possiblecandidate for forming the death-inducing signaling complex with Fas, wasalso activated in a dose- and time-dependent manner. There was significantactivation of caspase 9, 3 and 2 by UV. The apoptotic pathways appeared tobe normal in acquired UV-resistant HeLa cells. In addition, there was a UVdose-dependent induction of chromatin condensation in both parental andUV-resistant cells. However, resistant cells displayed significant reductionin chromatin condensation at lower doses. Inhibition of caspase-3 activation byspecific inhibitor significantly reduced the chromatin condensation in bothcell types, and unexpectedly, the difference between the two cell lines wascompletely eradicated, suggesting that the caspase-3 pathway plays asignificant role in reducing apoptosis in resistant cells. The resultsindicate that UV induces apoptosis by direct activation of apoptoticproteins in HeLa and resistant cells. Although resistant cells displayedpartial inhibition of UV-induced apoptosis through the caspase-3 pathway,there was no consistent difference in the activation of this and relatedcaspase-9 caspases compared to parental HeLa cells.


2013 ◽  
Vol 8 (6) ◽  
pp. 1934578X1300800
Author(s):  
Chihiro Ito ◽  
Tomiyasu Murata ◽  
Midori Kato ◽  
Natsu Suzuki ◽  
Tian-Shung Wu ◽  
...  

In an ongoing search for cancer-preventing compounds derived from plant sources, we isolated the quinolin-2,4-dione alkaloid severibuxine from the root bark of Severinia buxifolia collected in Taiwan and then examined the apoptotic effect of this compound. Severibuxine showed cytotoxicity to leukemia HL-60 cells (IC50 = 12.3±0.6 μM). Fluorescence microscopic analysis of cells stained with Hoechst 33342 indicated that the percentage of apoptotic cells showing nuclear condensation and fragmentation increased in a time-dependent manner. In addition, the activities of caspase-9 and caspase-3 were also enhanced in a time-dependent manner upon treatment with severibuxine. The addition of caspase-9 and caspase-3 inhibitors blocked severibuxine-mediated apoptosis. Upon treatment with severibuxine, the mitochondrial membrane potential decreased in a time-dependent manner. Severibuxine induced apoptosis in HL-60 cells through activation of the caspase-9/caspase-3 pathway, which is triggered by mitochondrial dysfunction.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dongxiao Jiang ◽  
Shufei Ding ◽  
Zhujun Mao ◽  
Liyan You ◽  
Yeping Ruan

Abstract Background Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. Methods We identified the overlapping targets of aloe-emodin and colon cancer and performed protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. Results The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. Conclusion These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.


2018 ◽  
Vol 51 (3) ◽  
pp. 1276-1286 ◽  
Author(s):  
Feng Liang ◽  
Yu-Gang Wang ◽  
Changcheng Wang

Background/Aims: This study aimed at investigating the effects of metformin on the growth and metastasis of esophageal squamous cell carcinoma (ESCC) in vitro and in vivo. Methods: Two human ESCC cell lines EC9706 and Eca109 were selected and challenged with metformin in this study. Western blot assay was performed to detect th level of Bcl-2, Bax and Caspase-3. Scratch wound assay, transwell assay and Millicell invasion assay were used to assay the invasion and migration of EC9706 and Eca109 cells. Nude mice tumor models were used to assay the growth and lung metastasis of ESCC cells after metformin treatment. The plasma glucose level was also assayed. Results: We found that metformin significantly inhibited proliferation and induced apoptosis of both ESCC cell lines in a dose- and time-dependent manner, and the expression of Bcl-2 was down-regulated and Bax and Caspase-3 were up-regulated. Metformin significantly inhibited the invasion and migration of EC9706 and Eca109 cells (p < 0.05). mRNA and protein levels of MMP-2 and MMP-9 decreased significantly upon treatment with metformin of 10mM for 12, 24 and 48h in a time-dependent manner (p < 0.05). In line with in vitro results, in vivo experiments demonstrated that metformin inhibited tumorigenicity, inhibited lung metastasis and down-regulated the expression of MMP-2 and MMP-9. Moreover, we showed that metformin treatment did not cause significant alteration in liver and renal functions and plasma glucose level. Conclusion: Our study for the first time demonstrated the anti-invasive and anti-metastatic effects of metformin on human ESCC cells both in vitro and in vivo, which might be associated with the down-regulation of MMP-2 and MMP-9. As a whole, our results indicate the potential of metformin to be developed as a chemotherapeutic agent for patients with ESCC and might stimulate future studies on this area.


1998 ◽  
Vol 275 (5) ◽  
pp. L942-L949 ◽  
Author(s):  
Beek Yoke Chin ◽  
Mary E. Choi ◽  
Marie D. Burdick ◽  
Robert M. Strieter ◽  
Terence H. Risby ◽  
...  

Particulate matter (PM) is a major by-product from the combustion of fossil fuels. The biological target of inhaled PM is the pulmonary epithelium and resident macrophages. In this study, we demonstrate that cultured macrophages (RAW 264.7 cells) exposed continously to a well-defined model of PM [benzo[ a]pyrene adsorbed on carbon black (CB+BaP)] exhibit a time-dependent expression and release of the cytokine tumor necrosis factor-α (TNF-α). CB+BaP also evoked programmed cell death or apoptosis in cultured macrophages as assessed by genomic DNA-laddering assays. The CB+BaP-induced apoptosis was inhibited when macrophages were treated with CB+BaP in the presence of a neutralizing antibody to TNF-α, suggesting that TNF-α plays an important role in mediating CB+BaP-induced apoptosis in macrophages. Interestingly, neither untreated carbon black nor benzo[ a]pyrene alone induced apoptosis or caused the release of TNF-α in RAW 264.7 cells. Moreover, we observed that TNF-α activates mitogen-activated protein kinase (MAPK) activity, the extracellular signal-regulated kinases p42/p44, in a time-dependent manner. RAW 264.7 cells treated with PD-098059, a selective inhibitor of MAPK kinase activity, did not exhibit CB+BaP-induced apoptosis and TNF-α secretion. Furthermore, cells treated with the MAPK kinase inhibitor did not undergo TNF-α-induced apoptosis. Taken together, our data suggest that TNF-α mediates PM-induced apoptosis and that the MAPK pathway may play an important role in regulating this pathway.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3673-3681 ◽  
Author(s):  
Joya Chandra ◽  
Joyce Gilbreath ◽  
Emil J Freireich ◽  
Kay-Oliver Kliche ◽  
Michael Andreeff ◽  
...  

Abstract Recent work has demonstrated that glucocorticoids, nucleoside analogues, and other cancer chemotherapeutics induce apoptosis in chronic lymphocytic leukemia (CLL) cells. In this study, we investigated the involvement of protease activation in these responses using selective peptide inhibitors of the interleukin-1β converting enzyme (ICE)/caspase family and a Ca2+-activated protease we recently implicated in thymocyte apoptosis. Apoptosis was associated with proteolytic cleavage of poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) and increased caspase protease activity, and cell-permeant caspase antagonists [zVAD(OMe)fmk and Boc-D(OBzl)cmk] blocked apoptosis in response to the glucocorticoid methylprednisolone or the nucleoside analogue fludarabine, indicating that caspase activation was required for these responses. However, a peptide-based inhibitor of the Ca2+-dependent lamin protease (zAPFcmk) also completely suppressed DNA fragmentation and the cleavage of lamin B1 . Strikingly, treatment of cells with zAPFcmk alone led to characteristic PARP cleavage, depletion of the precursor forms of two ICE family proteases (CPP32 and ICH-1), and phosphatidylserine exposure, suggesting that blockade of the lamin protease led to activation of the ICE family. Our results implicate the lamin protease as a target for Ca2+ during chemotherapy-induced apoptosis in CLL lymphocytes, and they identify a novel functional interaction between the protease and members of the ICE family.


Pharmacology ◽  
2019 ◽  
Vol 103 (5-6) ◽  
pp. 263-272 ◽  
Author(s):  
Sheng Li ◽  
Yuhua Qu ◽  
Xiu-Yin Shen ◽  
Ting Ouyang ◽  
Wen-Bin Fu ◽  
...  

Background: Crocetin is a carotenoid extracted from the traditional Chinese medical herb saffron. Previous studies have demonstrated that crocetin possesses anticancer properties that are effective against various cancers. As an extension of our earlier study, the present study explored the underlying mechanisms in crocetin’s anticancer effect on KYSE-150 cells. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), Mitogen-activated protein kinases (MAPK), and p53/p21 signal pathways play an important role in carcinogenesis, progression, and metastasis of carcinoma cells. Thus, we investigated crocetin’s effects on the PI3K/AKT, MAPK, and p53/p21 pathways in esophageal squamous carcinoma cell line KYSE-150 cells. Methods: KYSE-150 cells were treated with various concentrations of crocetin. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide assay, Annexin V/PI stain as well as Rh123 stain were used to evaluate the cell viability, apoptosis, and MMP. Western blot was used to detect the expression of PI3K, AKT, ERK1/2, p38, c-Jun NH-terminal kinase (JNK), P53, P21, Bcl-2, Bax, and cleaved caspase-3, which were associated with cell proliferation and apoptosis. Results: Our results showed that crocetin significantly inhibited the proliferation of KYSE-150 cells in a dose- and time-dependent manner. Crocetin also markedly induced cell apoptosis. Furthermore, we have found that crocetin not only inhibited the activation of PI3K/AKT, extracellular signal–regulated kinase-1/2 (ERK1/2), and p38 but also upregulated the p53/p21 level. These regulations ultimately triggered the mitochondrial-mediated apoptosis pathway with an eventual disruption of MMP, increased levels of Bax and cleaved caspase-3, and decreased levels of Bcl-2. Conclusions: These findings suggested that crocetin interfered with multiple signal pathways in KYSE-150 cells. Therefore, this study suggested that crocetin could potentially be used as a therapeutic candidate for the treatment of esophageal cancer.


2000 ◽  
Vol 46 (3) ◽  
pp. 241-245 ◽  
Author(s):  
Hiroshi Mese ◽  
Akira Sasaki ◽  
Shuko Nakayama ◽  
Rafael E. Alcalde ◽  
Tomohiro Matsumura

2007 ◽  
Vol 292 (6) ◽  
pp. F1710-F1717 ◽  
Author(s):  
Cheng Yang ◽  
Varsha Kaushal ◽  
Sudhir V. Shah ◽  
Gur P. Kaushal

Mcl-1 is an antiapoptotic member of the Bcl-2 family that plays an important role in cell survival. We demonstrate that proteasome-dependent regulation of Mcl-1 plays a critical role in renal tubular epithelial cell injury from cisplatin. Protein levels of Mcl-1 rapidly declined in a time-dependent manner following cisplatin treatment of LLC-PK1cells. However, mRNA levels of Mcl-1 were not altered following cisplatin treatment. Expression of other antiapoptotic members of the Bcl-2 family such as Bcl-2 and BclxL was not affected by cisplatin treatment. Cisplatin-induced loss of Mcl-1 occurs at the same time as the mitochondrial release of cytochrome c, activation of caspase-3, and initiation of apoptosis. Treatment of cells with cycloheximide, a protein synthesis inhibitor, revealed rapid turnover of Mcl-1. In addition, treatment with cycloheximide in the presence or absence of cisplatin demonstrated that cisplatin-induced loss of Mcl-1 results from posttranslational degradation rather than transcriptional inhibition. Overexpression of Mcl-1 protected cells from cisplatin-induced caspase-3 activation and apoptosis. Preincubating cells with the proteasome inhibitor MG-132 or lactacystin not only restored cisplatin-induced loss of Mcl-1 but also resulted in an accumulation of Mcl-1 that exceeded basal levels; however, Bcl-2 and BclxL levels did not change in response to MG-132 or lactacystin. The proteasome inhibitors effectively blocked cisplatin-induced mitochondrial release of cytochrome c, caspase-3 activation, and apoptosis. These studies suggest that proteasome regulation of Mcl-1 is crucial in the cisplatin-induced apoptosis via the mitochondrial apoptotic pathway and that Mcl-1 is an important therapeutic target in cisplatin injury to renal tubular epithelial cells.


2000 ◽  
Vol 351 (1) ◽  
pp. 221-232 ◽  
Author(s):  
Wen-Hsiung CHAN ◽  
Jau-Song YU ◽  
Shiaw-Der YANG

Photodynamic treatment (PDT) elicits diverse cellular responses and can also cause apoptosis. In the present study the cascade of signalling events involved in PDT-induced apoptosis was investigated using Rose Bengal (RB) as the photosensitizer, and human epidermal carcinoma A431 cells as the cell model. We show that a 36-kDa kinase detected by an in-gel kinase assay is markedly activated during PDT-triggered apoptosis. Immunoblot analysis revealed that this 36-kDa kinase represents the C-terminal catalytic fragment of p21-activated kinase (PAK)2. Generation of this active fragment of PAK2 is mediated by the caspase family of proteases, which are activated by PDT. The specific caspase inhibitors (acetyl-Asp-Glu-Val-Asp-aldehyde and acetyl-Tyr-Val-Ala-Asp-chloromethylketone) block the PDT-induced caspase-3 activation and subsequent PAK2 cleavage/activation, indicating a major role for the caspase family proteases in PDT-induced apoptosis. Both PDT-induced caspase-3 activation and PAK2 cleavage/activation can be inhibited by the singlet oxygen scavengers, L-histidine and α-tocopherol, but not the hydroxyl radical scavenger, mannitol, demonstrating that singlet oxygen is an immediate early-apoptotic signal generated by PDT. In addition, PDT can induce a two-stage activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) in A431 cells; the early-stage JNK activation is singlet oxygen-dependent, whereas the late-stage JNK activation is mediated by the singlet oxygen-triggered caspase activation. Experiments using anti-sense oligonucleotides against JNK1 and PAK2 further show that during PDT-induced apoptosis the early-stage JNK activation is required for caspase activation, and that the late-stage JNK activation is regulated by the caspase-mediated cleavage/activation of PAK2. Collectively, a model for the PDT-triggered apoptotic signalling cascade with RB is proposed, which involves singlet oxygen, JNK, caspase-3 and PAK2, sequentially.


Sign in / Sign up

Export Citation Format

Share Document