scholarly journals Defective dietary fat processing in transgenic mice lacking aquaporin-1 water channels

2001 ◽  
Vol 280 (1) ◽  
pp. C126-C134 ◽  
Author(s):  
Tonghui Ma ◽  
Sujatha Jayaraman ◽  
Kasper S. Wang ◽  
Yuanlin Song ◽  
Baoxue Yang ◽  
...  

Immunocytochemistry showed expression of aquaporin-1 (AQP1) water channels at sites involved in dietary fat processing, including intrahepatic cholangiocytes, gallbladder, pancreatic microvascular endothelium, and intestinal lacteals. To determine whether AQP1 has a role in dietary fat digestion and/or absorption, mice were placed on a diet that contained 50% fat. Whereas wild-type mice (3–3.5 wk of age, 10–12 g) gained 49 ± 5% (SE, n = 50) body weight in 8 days, and heterozygous mice gained 46 ± 4%, AQP1 null mice gained only 4 ± 3%; weights became similar after return to a 6% fat diet after 6 days. The null mice on a high-fat diet acquired an oily appearance, developed steatorrhea with increased stool triglyceride content, and manifested serum hypotriglyceridemia. Supplementation of the high-fat diet with pancreatic enzymes partially corrected the decreased weight gain in null mice. Absorption of [14C]oleic acid from small intestine was not affected by AQP1 deletion, as determined by blood radioactivity after duodenal infusion. Lipase activity in feces and small intestine was remarkably greater in AQP1 null than wild-type mice on low- and high-fat diets. Fluid collections done in older mice (that are less sensitive to a high-fat diet) by ductal cannulation showed threefold increased pancreatic fluid flow in response to secretin/cholecystokinin, but volumes, pH, and amylase activities were affected little by AQP1 deletion, nor were bile flow rates and bile salt concentrations. Together, these results establish a dietary fat misprocessing defect in AQP1 null mice.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.


1997 ◽  
Vol 273 (1) ◽  
pp. R113-R120 ◽  
Author(s):  
B. Ahren ◽  
S. Mansson ◽  
R. L. Gingerich ◽  
P. J. Havel

Mechanisms regulating circulating leptin are incompletely understood. We developed a radioimmunoassay for mouse leptin to examine the influence of age, dietary fat content, and fasting on plasma concentrations of leptin in the background strain for the ob/ob mouse, the C57BL/6J mouse. Plasma leptin increased with age [5.3 +/- 0.6 ng/ml at 2 mo (n = 23) vs. 14.2 +/- 1.6 ng/ml at 11 mo (n = 15), P < 0.001]. Across all age groups (2-11 mo, n = 160), log plasma leptin correlated with body weight (r = 0.68, P < 0.0001), plasma insulin (r = 0.38, P < 0.001), and amount of intra-abdominal fat (r = 0.90, P < 0.001), as revealed by magnetic resonance imaging. Plasma leptin was increased by a high-fat diet (58% fat for 10 mo) and reduced by fasting for 48 h. The reduction of plasma leptin was correlated with the reduction of plasma insulin (r = 0.43, P = 0.012) but not with the initial body weight or the change in body weight. Moreover, the reduction in plasma leptin by fasting was impaired by high-fat diet. Thus plasma leptin in C57BL/6J mice 1) increases with age or a high-fat diet; 2) correlates with body weight, fat content, and plasma insulin; and 3) is reduced during fasting by an action inhibited by high-fat diet and related to changes of plasma insulin.


2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


Obesity ◽  
2021 ◽  
Vol 29 (12) ◽  
pp. 2055-2067
Author(s):  
Yi Huang ◽  
Jazmin Osorio Mendoza ◽  
Min Li ◽  
Zengguang Jin ◽  
Baoguo Li ◽  
...  

2017 ◽  
Vol 114 (2) ◽  
pp. 312-323 ◽  
Author(s):  
Sebastian Steven ◽  
Mobin Dib ◽  
Michael Hausding ◽  
Fatemeh Kashani ◽  
Matthias Oelze ◽  
...  

Abstract Aims CD40 ligand (CD40L) signaling controls vascular oxidative stress and related dysfunction in angiotensin-II-induced arterial hypertension by regulating vascular immune cell recruitment and platelet activation. Here we investigated the role of CD40L in experimental hyperlipidemia. Methods and results Male wild type and CD40L−/− mice (C57BL/6 background) were subjected to high fat diet for sixteen weeks. Weight, cholesterol, HDL, and LDL levels, endothelial function (isometric tension recording), oxidative stress (NADPH oxidase expression, dihydroethidium fluorescence) and inflammatory parameters (inducible nitric oxide synthase, interleukin-6 expression) were assessed. CD40L expression, weight, leptin and lipids were increased, and endothelial dysfunction, oxidative stress and inflammation were more pronounced in wild type mice on a high fat diet, all of which was almost normalized by CD40L deficiency. Similar results were obtained in diabetic db/db mice with CD40/TRAF6 inhibitor (6877002) therapy. In a small human study higher serum sCD40L levels and an inflammatory phenotype were detected in the blood and Aorta ascendens of obese patients (body mass index > 35) that underwent by-pass surgery. Conclusion CD40L controls obesity-associated vascular inflammation, oxidative stress and endothelial dysfunction in mice and potentially humans. Thus, CD40L represents a therapeutic target in lipid metabolic disorders which is a leading cause in cardiovascular disease.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5428-5437 ◽  
Author(s):  
Johan Bourghardt ◽  
Anna S. K. Wilhelmson ◽  
Camilla Alexanderson ◽  
Karel De Gendt ◽  
Guido Verhoeven ◽  
...  

The atheroprotective effect of testosterone is thought to require aromatization of testosterone to estradiol, but no study has adequately addressed the role of the androgen receptor (AR), the major pathway for the physiological effects of testosterone. We used AR knockout (ARKO) mice on apolipoprotein E-deficient background to study the role of the AR in testosterone atheroprotection in male mice. Because ARKO mice are testosterone deficient, we sham operated or orchiectomized (Orx) the mice before puberty, and Orx mice were supplemented with placebo or a physiological testosterone dose. From 8 to 16 wk of age, the mice consumed a high-fat diet. In the aortic root, ARKO mice showed increased atherosclerotic lesion area (+80%, P &lt; 0.05). Compared with placebo, testosterone reduced lesion area both in Orx wild-type (WT) mice (by 50%, P &lt; 0.001) and ARKO mice (by 24%, P &lt; 0.05). However, lesion area was larger in testosterone-supplemented ARKO compared with testosterone-supplemented WT mice (+57%, P &lt; 0.05). In WT mice, testosterone reduced the presence of a necrotic core in the plaque (80% among placebo-treated vs. 12% among testosterone-treated mice; P &lt; 0.05), whereas there was no significant effect in ARKO mice (P = 0.20). In conclusion, ARKO mice on apolipoprotein E-deficient background display accelerated atherosclerosis. Testosterone treatment reduced atherosclerosis in both WT and ARKO mice. However, the effect on lesion area and complexity was more pronounced in WT than in ARKO mice, and lesion area was larger in ARKO mice even after testosterone supplementation. These results are consistent with an AR-dependent as well as an AR-independent component of testosterone atheroprotection in male mice.


2021 ◽  
Vol 22 (19) ◽  
pp. 10303
Author(s):  
Fangping Jia ◽  
Xiao Hu ◽  
Takefumi Kimura ◽  
Naoki Tanaka

Previous studies have revealed that a high-fat diet is one of the key contributors to the progression of liver fibrosis, and increasing studies are devoted to analyzing the different influences of diverse fat sources on the progression of non-alcoholic steatohepatitis. When we treated three types of isocaloric diets that are rich in cholesterol, saturated fatty acid (SFA) and trans fatty acid (TFA) with hepatitis C virus core gene transgenic mice that spontaneously developed hepatic steatosis without apparent fibrosis, TFA and cholesterol-rich diet, but not SFA-rich diet, displayed distinct hepatic fibrosis. This review summarizes the recent advances in animal and cell studies regarding the effects of these three types of fat on liver fibrogenesis.


2018 ◽  
Vol 1 (4) ◽  
Author(s):  
Tianyi Wang ◽  
Song Huang ◽  
Xiao Han ◽  
Sujuan Liu ◽  
Yanmei Niu ◽  
...  

Objective Obesity is becoming increasingly prevalent and is an important contributor to the worldwide burden of diseases. It is widely accepted that exercise training is beneficial for the prevention and treatment of obesity. However, the underlying mechanism by which exercise training improving skeletal muscle lipid metabolism is still not fully described. Sestrins (Sestrin1-3) are highly conserved stress-inducible protein. Concomitant ablation of Sestrin2 and Sestrin3 has been reported to provoke hepatic mTORC1/S6K1 activation and insulin resistance even without nutritional overload and obesity, implicating that Sestrin2 and Sestrin3 have an important homeostatic function in the control of mammalian glucose and lipid metabolism. Our previous results demonstrated that physical exercise increased Sestrin2 expression in murine skeletal muscle, while the role of Sestrin2 in regulating lipid metabolism remains unknown.  SH2 domain containing inositol 5-phosphatase (SHIP2) acts as a negative regulator of the insulin signaling both in vitro and in vivo. An increased expression of SHIP2 inhibits the insulin-induced Akt activation, glucose uptake, and glycogen synthesis in 3T3-L1 adipocytes, L6 myotubes and tissues of animal models. Alterations of SHIP2 expression and/or enzymatic function appear to have a profound impact on the development of insulin resistance. However, the regulatory function of SHIP2 in lipid metabolism after exercise remains unclear. It has been reported that SHIP2 modulated lipid metabolism through regulating the activity of c-Jun N-terminal kinase (JNK) and Sterol regulatory element-binding protein-1 (SREBP-1). JNK is a subclass of mitogen-activated protein kinase (MAPK) signaling pathway in mammalian cells and plays a crucial role in metabolic changes and inflammation associated with a high-fat diet. Inhibition of JNK reduces lipid deposition and proteins level of fatty acid de novo synthesis in liver cells. It has been reported that Sestrin2 regulated the phosphorylation of JNK, however the underlying mechanism remains unclear. SREBP-1 is important in regulating cholesterol biosynthesis and uptake and fatty acid biosynthesis, and SREBP-1 expression produces two different isoforms, SREBP-1a and SREBP-1c. SREBP-1c is responsible for regulating the genes required for de novo lipogenesis and its expression is regulated by insulin. SREBP-1a regulates genes related to lipid and cholesterol production and its activity is regulated by sterol levels in the cell. Altogether, the purpose of this study was to explore the effect and underlying mechanism of Sestrin2 on lipid accumulation after exercise training. Methods Male wild type and SESN2−/− mice were divided into normal chow (NC) and high-fat diet (HFD) groups to create insulin resistance mice model. After 8 weeks the IR model group was then divided into HFD sedentary control and HFD exercise groups (HE). Mice in HE group underwent 6-week treadmill exercise to reveal the effect of exercise training on lipid metabolism in insulin resistance model induced by HFD. We explored the mechanism through which Sestrin2 regulated lipid metabolism in vitro by supplying palmitate, overexpressing or inhibiting SESNs, SHIP2 and JNK in myotubes. Results We found that 6-week exercise training decreased body weight, BMI and fat mass in wild type and SESN2-/- mice after high-fat diet (HFD) feeding. And exercise training decreased the level of plasma glucose, serum insulin, triglycerides and free fatty acids in wild type but not in Sestrin2-/- mice. Lipid droplet in skeletal muscle was also decreased in wild type but did not in Sestrin2-/- mice. Moreover, exercise training increased the proteins expression involved in fatty acid oxidation and decreased the proteins which related to fatty acid de novo synthesis. The results of oil red staining and the change of proteins related to fatty acid de novo synthesis and beta oxidation in myotubes treated with palmitate, Ad-SESN2 and siRNA-Sestrin2 were consisted with the results in vivo, which suggested that Sestrin2 was a key regulator in lipid metabolism. Exercise training increased Sestrin2 expression and reversed up-regulation of SHIP2 and pJNK induced by HFD in wild type mice but not in Sestrin2-/- mice. In parallel, overexpression of Sestrin2 decreased the level of SHIP2 and pJNK induced by palmitate while Sestrin2 knock down by siRNA-Sestrin2 treatment did not change the expression of SHIP2 and pJNK, which suggested that Sestrin2 modulated SHIP2 and JNK in the state of abnormal lipid metabolism. Inhibition of SHIP2 reduced the activity of JNK, increased lipid accumulation and the proteins of fatty acid synthesis after palmitate treatment and over expression of Sestrin2, which suggest that Sestrin2 modulated lipid metabolism through SHIP2/JNK pathway. Conclusions Sestrin2 plays an important role in improving lipid metabolism after exercise training, and Sestrin2 regulates lipid metabolism by SHIP2-JNK pathway in skeletal muscle.


2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Vineesh Vimala Raveendran ◽  
Karen Kassel ◽  
Donald Smith ◽  
Rachel Cherian ◽  
Gregory Reed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document