scholarly journals Estrogen replacement enhances insulin-induced AS160 activation and improves insulin sensitivity in ovariectomized rats

2018 ◽  
Vol 315 (6) ◽  
pp. E1296-E1304 ◽  
Author(s):  
Mizuho Kawakami ◽  
Naoko Yokota-Nakagi ◽  
Masami Uji ◽  
Ken-ichi Yoshida ◽  
Shoko Tazumi ◽  
...  

Menopause predisposes women to impaired glucose metabolism, but the role of estrogen remains unclear. In this study, we examined the effects of chronic estrogen replacement on whole body insulin sensitivity and insulin signaling in ovariectomized rats. Female Wistar rats aged 9 wk were ovariectomized under anesthesia. After 4 wk, pellets containing either 17β-estradiol (E2) or placebo (Pla) were subcutaneously implanted in the rats. After 4 wk of treatment, the intra-abdominal fat accumulation was greater in the Pla group than that in the E2 group. Hyperinsulinemic-euglycemic clamp analysis and intravenous glucose tolerance test revealed that insulin sensitivity was significantly lower in the Pla group than in the E2 group. In addition, Western blotting showed that in vivo insulin stimulation increased protein kinase B (Akt) phosphorylation to a similar degree in the gastrocnemius and liver of both groups, but phosphorylated Akt2 Ser474 was enhanced in the muscle of the E2 group compared with the Pla group. Moreover, insulin-stimulated phosphorylation of Akt substrate of 160 kDa (AS160) Thr642 was observed only in the E2 group, resulting in the difference between the two groups. Additionally, AS160 protein and mRNA levels were higher in muscle of the E2 group than the Pla group. In contrast, E2 replacement had no effect on glucose transporter 4 protein levels in muscle and glycogen synthase kinase-3β in muscle and liver. These results suggest that estrogen replacement improves insulin sensitivity by activating the Akt2/AS160 pathway in the insulin-stimulated muscle of ovariectomized rats.

Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Alice S Ryan ◽  
Heidi Ortmeyer ◽  
Frederick Ivey ◽  
Charlene Hafer-Macko

Risk of glucose intolerance and diabetes increases in chronic stroke. The purpose of this study was to assess insulin sensitivity and glycogen synthase (GS), a known benchmark index of insulin action in skeletal muscle, and to compare the activity of this important regulatory enzyme between paretic (P) and non-paretic (NP) skeletal muscle in chronic stroke. We measured insulin sensitivity (M) and bilateral GS fractional activity (ratio of independent to total activity), in lyophilized microdissected muscle samples obtained after an overnight fast and 2 hrs into a 3-hr 80 mU . m -2. min -1 hyperinsulinemic-euglycemic clamp in 21 stroke survivors (n=15 men, n=6 women) (age: 59±2 yrs, BMI: 31±2 kg/m 2 , X±SEM). All had hemiparetic gait after ischemic stroke (>6 months), low aerobic capacity (VO 2 peak, 19.7±1.3 ml/kg/min), and wide range of %body fat (11-48%). Leg lean mass was lower in P than NP (9.3±0.5 vs. 10.0±0.5 kg, P<0.001). Subjects had either normal glucose tolerance (n=7), impaired glucose tolerance (n=7), or diabetes (n=7) and insulin resistance (M: 38.5±2.6 umol/kgFFM/min). Insulin robustly increased GS fractional activity (basal vs. insulin) in P (2.8±0.4 vs.7.5±0.8%, P<0.00001) and NP (2.7±0.4 vs. 9.1±1.1%, P<0.00001) muscle. The %change was greater in NP than P (213±32 vs. 296±36%, P=0.04). The effect of in vivo insulin to increase GS fractional activity was associated with M in P and NP muscle (r=0.59 and r=0.49, P<0.05). In conclusion, muscle atrophy and a reduction in insulin action in paretic muscle likely contribute to whole body insulin resistance in chronic stroke.


2006 ◽  
Vol 291 (4) ◽  
pp. E724-E728 ◽  
Author(s):  
Bovorn Sirikul ◽  
Barbara A. Gower ◽  
Gary R. Hunter ◽  
Dawnine E. Larson-Meyer ◽  
Bradley R. Newcomer

Recent data have shown that individuals with low insulin sensitivity (SI) also have reduced whole body maximal oxygen uptake. The objectives of this study were to determine 1) whether muscle mitochondrial function was independently related to SI after being adjusted for known determinants of SI and 2) whether lower SI among African-American (AA) vs. Caucasian-American (CA) women was due to lower muscle mitochondrial function among AA women. Subjects were 37 CA and 22 AA premenopausal women (age: 33.6 ± 6.3 yr). Mitochondrial function [time constant of ADP (ADPtc)] was assessed during a 90-s unilateral isometric contraction using 31P magnetic resonance spectroscopy, SI with an intravenous glucose tolerance test, body composition by dual-energy X-ray absorptiometry, and visceral adipose tissue (VAT) with computed tomography. ANOVA was used to compare AA and CA groups, and multiple linear regression modeling was used to identify independent predictors of SI. Between-race comparisons indicated that muscle oxidative capacity was lower among AAs vs. CAs (ADPtc: 25.6 ± 9.8 vs. 21.4 ± 9.9 s). Multiple linear regression models for the dependent variable SI contained 1) VAT and race and 2) VAT, race, and ADPtc. Significant independent effects for all predictor variables were observed in both the first ( r2 = 0.345) and second ( r2 = 0.410) models. The partial correlation for race was lower in the second model (−0.404 vs. −0.300), suggesting that muscle mitochondrial function contributed to the racial difference in SI. Lower muscle mitochondrial function among AAs may in part explain lower SI among them.


2021 ◽  
Vol 9 (1) ◽  
pp. e001905
Author(s):  
Jung-Hee Hong ◽  
Dae-Hee Kim ◽  
Moon-Kyu Lee

IntroductionThe concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels.Research design and methodsTo investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function.ResultsChronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats.ConclusionThese results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.


1986 ◽  
Vol 250 (5) ◽  
pp. E570-E575
Author(s):  
G. K. Grimditch ◽  
R. J. Barnard ◽  
S. A. Kaplan ◽  
E. Sternlicht

We examined the hypothesis that the exercise training-induced increase in skeletal muscle insulin sensitivity is mediated by adaptations in insulin binding to sarcolemmal (SL) insulin receptors. Insulin binding studies were performed on rat skeletal muscle SL isolated from control and trained rats. No significant differences were noted between groups in body weight or fat. An intravenous glucose tolerance test showed an increase in whole-body insulin sensitivity with training, and specific D-glucose transport studies on isolated SL vesicles indicated that this was due in part to adaptations in skeletal muscle. Enzyme marker analyses revealed no differences in yield, purity, or contamination of SL membranes between the two groups. Scatchard analyses indicated no significant differences in the number of insulin binding sites per milligram SL protein on the high-affinity (15.0 +/- 4.1 vs. 18.1 +/- 6.4 X 10(9)) or on the low-affinity portions (925 +/- 80 vs. 884 +/- 106 X 10(9)) of the curves. The association constants of the high-affinity (0.764 +/- 0.154 vs. 0.685 +/- 0.264 X 10(9) M-1) and of the low affinity sites (0.0096 +/- 0.0012 vs. 0.0102 +/- 0.0012 X 10(9) M-1) also were similar. These results do not support the hypothesis that the increased sensitivity to insulin after exercise training is due to changes in SL insulin receptor binding.


Author(s):  
Hye Kyoung Sung ◽  
Patricia L. Mitchell ◽  
Sean Gross ◽  
Andre Marette ◽  
Gary Sweeney

Adiponectin is well established to mediate many beneficial metabolic effects, and this has stimulated great interest in development and validation of adiponectin receptor agonists as pharmaceutical tools. This study investigated the effects of ALY688, a peptide-based adiponectin receptor agonist, in rat L6 skeletal muscle cells. ALY688 significantly increased phosphorylation of several adiponectin downstream effectors, including AMPK, ACC and p38MAPK, assessed by immunoblotting and immunofluorescence microscopy. Temporal analysis using cells expressing an Akt biosensor demonstrated that ALY688 enhanced insulin sensitivity. This effect was associated with increased insulin-stimulated Akt and IRS-1 phosphorylation. The functional metabolic significance of these signaling effects was examined by measuring glucose uptake in myoblasts stably overexpressing the glucose transporter GLUT4. ALY688 treatment both increased glucose uptake itself and enhanced insulin-stimulated glucose uptake. In the model of high glucose/high insulin (HGHI)-induced insulin resistant cells, both temporal studies using the Akt biosensor as well as immunoblotting assessing Akt and IRS-1 phosphorylation indicated that ALY688 significantly reduced insulin resistance. Importantly, we observed that ALY688 administration to high-fat high sucrose fed mice also improve glucose handling, validating its efficacy in vivo. In summary, these data indicate that ALY688 activates adiponectin signaling pathways in skeletal muscle, leading to improved insulin sensitivity and beneficial metabolic effects.


2000 ◽  
Vol 167 (1) ◽  
pp. 107-115 ◽  
Author(s):  
J Shao ◽  
H Yamashita ◽  
L Qiao ◽  
JE Friedman

Recent studies suggest that the serine/threonine kinase protein kinase B (PKB or Akt) is involved in the pathway for insulin-stimulated glucose transporter 4 (GLUT4) translocation and glucose uptake. In this study we examined the components of the Akt signaling pathway in skeletal muscle and adipose tissue in vivo from C57BL/KsJ-Lepr(db/db) mice (db/db), a model of obesity, insulin resistance, and type II diabetes. There were no changes in the protein levels of GLUT4, p85alpha, or Akt in tissues from db/db mice compared with non-diabetic littermate controls (+/+). In response to acute insulin administration, GLUT4 recruitment to the plasma membrane increased twofold in muscle and adipose tissue from +/+ mice, but was significantly reduced by 42-43% (P<0.05) in both tissues from db/db mice. Insulin increased Akt-Ser(473) phosphorylation by two- to fivefold in muscle and adipose tissue from all mice. However, in db/db mice, maximal Akt-Ser(473) phosphorylation was decreased by 32% (P<0.05) and 69% (P<0.05) in muscle and adipose tissue respectively. This decreased phosphorylation in db/db mice corresponded with a significant decrease in maximal Akt kinase activity using a glycogen synthase kinase-3 fusion protein as a substrate (P<0.05). The level of insulin-stimulated tyrosine phosphorylation of p85alpha from phosphatidylinositol 3 (PI 3)-kinase, which is upstream of Akt, was also reduced in muscle and adipose tissue from db/db mice (P<0.05); however, there was no change in extracellular signal-regulated kinase-1 or -2 phosphorylation. These data implicate decreased insulin-stimulated Akt kinase activity as an important component underlying impaired GLUT4 translocation and insulin resistance in tissues from db/db mice. However, impaired insulin signal transduction appears to be specific for the PI 3-kinase pathway of insulin signaling, while the MAP kinase pathway remained intact.


2008 ◽  
Vol 294 (1) ◽  
pp. E168-E175 ◽  
Author(s):  
Jamileh Movassat ◽  
Danièle Bailbé ◽  
Cécile Lubrano-Berthelier ◽  
Françoise Picarel-Blanchot ◽  
Eric Bertin ◽  
...  

The adult Goto-Kakizaki (GK) rat is characterized by impaired glucose-induced insulin secretion in vivo and in vitro, decreased β-cell mass, decreased insulin sensitivity in the liver, and moderate insulin resistance in muscles and adipose tissue. GK rats do not exhibit basal hyperglycemia during the first 3 wk after birth and therefore could be considered prediabetic during this period. Our aim was to identify the initial pathophysiological changes occurring during the prediabetes period in this model of type 2 diabetes (T2DM). To address this, we investigated β-cell function, insulin sensitivity, and body composition in normoglycemic prediabetic GK rats. Our results revealed that the in vivo secretory response of GK β-cells to glucose is markedly reduced and the whole body insulin sensitivity is increased in the prediabetic GK rats in vivo. Moreover, the body composition of suckling GK rats is altered compared with age-matched Wistar rats, with an increase of the number of adipocytes before weaning despite a decreased body weight and lean mass in the GK rats. None of these changes appeared to be due to the postnatal nutritional environment of GK pups as demonstrated by cross-fostering GK pups with nondiabetic Wistar dams. In conclusion, in the GK model of T2DM, β-cell dysfunction associated with increased insulin sensitivity and the alteration of body composition are proximal events that might contribute to the establishment of overt diabetes in adult GK rats.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Jennifer L Ford ◽  
Raymond C Boston ◽  
Rachel E Walker ◽  
Gregory C Shearer

Background: Insulin resistance is a major contributor to metabolic syndrome, disrupting both glucose and non-esterified fatty acid (NEFA) dynamics through ineffective glucose clearance and decreased suppression of lipid droplet lipolysis. The minimal model of glucose dynamics is used for glycemic insulin sensitivity however it does not measure adipocyte insulin sensitivity, the primary determinant of plasma NEFA. An in-vivo approach to measuring adipocyte insulin sensitivity using NEFA is employed, comparing healthy and metabolic syndrome subjects. Both the models are employed to estimate insulin sensitivity and validate the NEFA approach. Objective: To test the use of NEFA kinetics to measure adipocyte insulin sensitivity compared to the glucose minimal model. Approach and results: Metabolic syndrome (n=56) and optimally healthy (n=14) subjects underwent a frequently sampled intravenous glucose tolerance test, and plasma analyzed for insulin, glucose, and NEFA. Insulin sensitivity ( S I ) and glucose effectiveness ( S G ) were calculated from the glucose minimal model. S I was 1.7 (mU/L) -1 min -1 and 0.40 (mU/L) -1 /min -1 and S G was 0.027 min -1 and 0.017 min -1 for the healthy and metabolic syndrome groups, respectively, indicating substantial glycemic insulin resistance in the latter. A model using glucose as the driver for NEFA kinetics was then applied. We found the initial rate of NEFA utilization by tissues (NU) was less, but the threshold glucose (tG) and glucose concentration required for a unit change in lipolysis inhibition ( G i ) were greater in metabolic syndrome verses healthy (NU: 0.050[0.045, 0.057] vs. 0.068[0.054, 0.086] p=0.03; tG: 6.7[6.2, 7.2] vs. 5.0[4.3, 5.9] p=0.001; G i : 0.30[0.25, 0.35] vs. 0.17[0.07, 0.27] p=0.02). No differences were found in initial rate of NEFA production or glucose utilization. Conclusion: Our results indicate that suppression of lipid-droplet lipolysis requires greater stimulus in metabolic syndrome compared to insulin sensitive adipocytes. Further, the rate of NEFA removal is less in metabolic syndrome. These results reveal components of insulin sensitivity not demonstrated by the glucose model. The NEFA model provides a measurement of adipocyte insulin sensitivity not captured by glycemic indices.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Subramanya Srikantan ◽  
Yilun Deng ◽  
Zi-Ming Cheng ◽  
Anqi Luo ◽  
Yuejuan Qin ◽  
...  

Abstract Understanding the molecular components of insulin signaling is relevant to effectively manage insulin resistance. We investigated the phenotype of the TMEM127 tumor suppressor gene deficiency in vivo. Whole-body Tmem127 knockout mice have decreased adiposity and maintain insulin sensitivity, low hepatic fat deposition and peripheral glucose clearance after a high-fat diet. Liver-specific and adipose-specific Tmem127 deletion partially overlap global Tmem127 loss: liver Tmem127 promotes hepatic gluconeogenesis and inhibits peripheral glucose uptake, while adipose Tmem127 downregulates adipogenesis and hepatic glucose production. mTORC2 is activated in TMEM127-deficient hepatocytes suggesting that it interacts with TMEM127 to control insulin sensitivity. Murine hepatic Tmem127 expression is increased in insulin-resistant states and is reversed by diet or the insulin sensitizer pioglitazone. Importantly, human liver TMEM127 expression correlates with steatohepatitis and insulin resistance. Our results suggest that besides tumor suppression activities, TMEM127 is a nutrient-sensing component of glucose/lipid homeostasis and may be a target in insulin resistance.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document