Estrogen-induced upregulation of AR expression and enhancement of AR nuclear translocation in mouse fallopian tubes in vivo

2007 ◽  
Vol 292 (2) ◽  
pp. E604-E614 ◽  
Author(s):  
Ruijin Shao ◽  
Karin Ljungström ◽  
Birgitta Weijdegård ◽  
Emil Egecioglu ◽  
Julia Fernandez-Rodriguez ◽  
...  

Female mice lacking AR display alterations in ovarian and uterine function. However, the biology of AR in the fallopian tube is not fully understood. To gain an insight into potential roles of AR in this tissue, we demonstrated that eCG treatment increased AR expression in a time-dependent manner and subsequent treatment with hCG decreased AR expression in mouse fallopian tubes. This expression pattern was positively associated with 17β-estradiol and testosterone levels in vivo. Immunohistochemical analysis of fallopian tube epithelial cells revealed that nuclear localization of AR increased in parallel with decreased AR in the cytoplasm following eCG treatment. Moreover, we found that treatment with flutamide upregulated AR expression in immature mice in association with a decrease in serum testosterone levels, whereas the same treatment resulted in downregulation of AR expression in gonadotropin-stimulated mice with concomitant decreases in serum 17β-estradiol concentrations, suggesting that androgen differs from estrogen in the regulation of AR expression. Furthermore, we demonstrated that DES increased both AR protein expression and nuclear location over a 48-h time course. DHT had rapid effects, with induction of AR expression and translocation at 6 h after injection, but unlike DES it had prolonged efficacy. In addition, we provided direct in vivo evidence that nuclear protein interaction between AR and p21Cip1, a previously reported AR-regulated gene, was enhanced by gonadotropin stimulation. To our knowledge, this study provides the first demonstration to illustrate that estrogen as a principal regulator may contribute to regulate and activate AR in the fallopian tubes in vivo.

2007 ◽  
Vol 293 (5) ◽  
pp. E1430-E1442 ◽  
Author(s):  
Ruijin Shao ◽  
Emil Egecioglu ◽  
Birgitta Weijdegård ◽  
John J. Kopchick ◽  
Julia Fernandez-Rodriguez ◽  
...  

Estrogen receptors (ERs) are members of the nuclear receptor superfamily and are involved in regulation of fallopian tube functions (i.e., enhancement of protein secretion, formation of tubal fluid, and regulation of gamete transport). However, the ER subtype-mediated mechanisms underlying these processes have not been completely clarified. Recently, we identified ERβ expression and localization in rat fallopian tubes, suggesting a potential biological function of ERβ related to calcium-dependent ciliated beating. Here we provide for the first time insight into the less studied ERα isoforms, which mediate estrogen-dependent production and secretion of IGFs in vivo. First, Western blot studies revealed that three ERα isoforms were expressed in mouse fallopian tubes. Subsequent immunohistochemical analysis showed that ERα was detected in all cell types, whereas ERβ was mainly localized in ciliated epithelial cells. Second, ERα isoform levels were dramatically downregulated in mouse fallopian tubes by treatment with E2 or PPT, an ERα agonist, in a time-dependent manner. Third, the presence of ICI 182,780, an ER antagonist, blocked the E2- or PPT-induced downregulation of tubal ERα isoform expression in mice. However, alteration of ERα immunoreactivity following ICI 182,780 treatment was only detected in epithelial cells of the ampullary region. Fourth, changes in ERα isoform expression were found to be coupled to multiple E2 effects on tubal growth, protein synthesis, and secretion in mouse fallopian tube tissues and fluid. In particular, E2 exhibited positive regulation of IGF-I and IGF-II protein levels. Finally, using growth hormone receptor (GHR) gene-disrupted mice, we showed that regulation by E2 of IGF production was independent of GH-induced GHR signaling in mouse fallopian tubes in vivo. These data, together with previous studies from our laboratory, suggest that the long-term effects of estrogen agonist promote IGF synthesis and secretion in mouse tubal epithelial cells and fallopian tube fluid via stimulation of ERα.


Biomedicines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 420
Author(s):  
Su-Jung Hwang ◽  
Ye-Seul Song ◽  
Hyo-Jong Lee

Kushen (Radix Sophorae flavescentis) is used to treat ulcerative colitis, tumors, and pruritus. Recently, phaseolin, formononetin, matrine, luteolin, and quercetin, through a network pharmacology approach, were tentatively identified as five bioactive constituents responsible for the anti-inflammatory effects of S. flavescentis. However, the role of phaseolin (one of the primary components of S. flavescentis) in the direct regulation of inflammation and inflammatory processes is not well known. In this study, the beneficial role of phaseolin against inflammation was explored in lipopolysaccharide (LPS)-induced inflammation models of RAW 264.7 macrophages and zebrafish larvae. Phaseolin inhibited LPS-mediated production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS), without affecting cell viability. In addition, phaseolin suppressed pro-inflammatory mediators such as cyclooxygenase 2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and interleukin-6 (IL-6) in a dose-dependent manner. Furthermore, phaseolin reduced matrix metalloproteinase (MMP) activity as well as macrophage adhesion in vitro and the recruitment of leukocytes in vivo by downregulating Ninjurin 1 (Ninj1), an adhesion molecule. Finally, phaseolin inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB). In view of the above, our results suggest that phaseolin could be a potential therapeutic candidate for the management of inflammation.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 730
Author(s):  
Biji Mathew ◽  
Leianne A. Torres ◽  
Lorea Gamboa Gamboa Acha ◽  
Sophie Tran ◽  
Alice Liu ◽  
...  

Cell replacement therapy using mesenchymal (MSC) and other stem cells has been evaluated for diabetic retinopathy and glaucoma. This approach has significant limitations, including few cells integrated, aberrant growth, and surgical complications. Mesenchymal Stem Cell Exosomes/Extracellular Vesicles (MSC EVs), which include exosomes and microvesicles, are an emerging alternative, promoting immunomodulation, repair, and regeneration by mediating MSC’s paracrine effects. For the clinical translation of EV therapy, it is important to determine the cellular destination and time course of EV uptake in the retina following administration. Here, we tested the cellular fate of EVs using in vivo rat retinas, ex vivo retinal explant, and primary retinal cells. Intravitreally administered fluorescent EVs were rapidly cleared from the vitreous. Retinal ganglion cells (RGCs) had maximal EV fluorescence at 14 days post administration, and microglia at 7 days. Both in vivo and in the explant model, most EVs were no deeper than the inner nuclear layer. Retinal astrocytes, microglia, and mixed neurons in vitro endocytosed EVs in a dose-dependent manner. Thus, our results indicate that intravitreal EVs are suited for the treatment of retinal diseases affecting the inner retina. Modification of the EV surface should be considered for maintaining EVs in the vitreous for prolonged delivery.


2004 ◽  
Vol 286 (6) ◽  
pp. L1179-L1187 ◽  
Author(s):  
Kirk A. Gilbert ◽  
Stephen R. Rannels

The regulation of matrix γ-carboxyglutamic acid protein (MGP) expression during the process of lung branching morphogenesis and development was investigated. MGP mRNA expression was determined over an embryonic and postnatal time course and shown to be developmentally regulated. Immunohistochemical analysis revealed increased staining for MGP in peripheral mesenchyme surrounding distal epithelial tubules. Fetal lung explants were used as an in vitro growth model to examine expression and regulation of MGP during branching morphogenesis. MGP mRNA expression over the culture interval mimicked the in vivo time course. Explants cultured in the presence of antibodies against MGP showed gross dilation and reduced terminal lung bud counts, accompanied by changes in MGP, sonic hedgehog, and patched mRNA expression. Similarly, antifibronectin antibody treatment resulted in explant dilation and reduced MGP expression, providing evidence for an interaction with MGP and fibronectin. Conversely, intraluminal microinjection of anti-MGP antibodies had no effect either on explant growth or MGP expression, supporting the hypothesis that MGP exerts its effects through the mesenchyme. Taken together, the results suggest that MGP plays a role in lung growth and development, likely via temporally and spatially specific interactions with other branching morphogenesis-related proteins to influence growth processes.


2000 ◽  
Vol 20 (18) ◽  
pp. 6913-6922 ◽  
Author(s):  
Kiyoshi Shimizu ◽  
Shigeru Chiba ◽  
Noriko Hosoya ◽  
Keiki Kumano ◽  
Toshiki Saito ◽  
...  

ABSTRACT Delta1, Jagged1, and Jagged2, commonly designated Delta/Serrate/LAG-2 (DSL) proteins, are known to be ligands for Notch1. However, it has been less understood whether they are ligands for Notch receptors other than Notch1. Meanwhile, ligand-induced cleavage and nuclear translocation of the Notch protein are considered to be fundamental for Notch signaling, yet direct observation of the behavior of the Notch molecule after ligand binding, including cleavage and nuclear translocation, has been lacking. In this report, we investigated these issues for Notch2. All of the three DSL proteins bound to endogenous Notch2 on the surface of BaF3 cells, although characteristics of Jagged2 for binding to Notch2 apparently differed from that of Delta1 and Jagged1. After binding, the three DSL proteins induced cleavage of the membrane-spanning subunit of Notch2 (Notch2TM), which occurred within 15 min. In a simultaneous time course, the cleaved fragment of Notch2TMwas translocated into the nucleus. Interestingly, the cleaved Notch2 fragment was hyperphosphorylated also in a time-dependent manner. Finally, binding of DSL proteins to Notch2 also activated the transcription of reporter genes driven by the RBP-Jκ-responsive promoter. Together, these data indicate that all of these DSL proteins function as ligands for Notch2. Moreover, the findings of rapid cleavage, nuclear translocation, and phosphorylation of Notch2 after ligand binding facilitate the understanding of the Notch signaling.


2020 ◽  
Vol 21 (16) ◽  
pp. 5700 ◽  
Author(s):  
Rianthong Phumsuay ◽  
Chawanphat Muangnoi ◽  
Peththa Wadu Dasuni Wasana ◽  
Hasriadi Hasriadi ◽  
Opa Vajragupta ◽  
...  

Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.


2020 ◽  
Vol 7 (9) ◽  
pp. 200900
Author(s):  
Nebojša Stilinović ◽  
Ivan Čapo ◽  
Saša Vukmirović ◽  
Aleksandar Rašković ◽  
Ana Tomas ◽  
...  

This study investigated the chemical and nutritional profile and antioxidative properties of cultivated Coprinus comatus . Proximate analysis revealed that C. comatus is rich in carbohydrates, dietary fibres and proteins, and could also be a valuable source of phenolics. Additionally, fat content is low, consisting mainly of polyunsaturated and omega-3 fatty acids. Furthermore, the safety profile of C. comatus is satisfactory, with all elements of toxicological importance within the proposed limits. Oral treatment with C. comatus for 42 days improved the antioxidant capabilities and ameliorated carbon tetrachloride-induced liver damage in rats, marked by decreased serum aminotransferase levels and lipid peroxidation intensity. Glutathione concentrations increased in a dose-dependent manner. Histological morphometric and immunohistochemical analysis confirmed antioxidative and hepatoprotective potential. These findings imply that cultivated C. comatus could be considered a nutraceutical, having beneficial nutrient and therapeutic properties.


1999 ◽  
Vol 19 (1) ◽  
pp. 788-795 ◽  
Author(s):  
Dan Grisaru ◽  
Efrat Lev-Lehman ◽  
Michael Shapira ◽  
Ellen Chaikin ◽  
Joseph B. Lessing ◽  
...  

ABSTRACT The extended human acetylcholinesterase (AChE) promoter contains many binding sites for osteogenic factors, including 1,25-(OH)2 vitamin D3 and 17β-estradiol. In differentiating osteosarcoma Saos-2 cells, both of these factors enhanced transcription of the AChE mRNA variant 3′ terminated with exon 6 (E6-AChE mRNA), which encodes the catalytically and morphogenically active E6-AChE isoform. In contrast, antisense oligodeoxynucleotide suppression of E6-AChE mRNA expression increased Saos-2 proliferation in a dose- and sequence-dependent manner. The antisense mechanism of action was most likely mediated by mRNA destruction or translational arrest, as cytochemical staining revealed reduction in AChE gene expression. In vivo, we found that E6-AChE mRNA levels rose following midgestation in normally differentiating, postproliferative fetal chondrocytes but not in the osteogenically impaired chondrocytes of dwarf fetuses with thanatophoric dysplasia. Taken together, these findings suggest morphogenic involvement of E6-AChE in the proliferation-differentiation balance characteristic of human osteogenesis.


1985 ◽  
Vol 106 (1) ◽  
pp. 27-30 ◽  
Author(s):  
J. D. Heather ◽  
S. A. Whitehead

ABSTRACT The acute in-vivo effects of a potent LH-releasing hormone (LHRH) agonist, buserelin, on LH secretion and pituitary responsiveness to LHRH have been investigated in oestrous rats. Doses of 50, 100 and 250 ng buserelin stimulated LH release in a dose-dependent manner, the peak serum LH concentrations being measured 1 h after the treatment. Thereafter LH levels fell rapidly between 1 and 6 h and by 18 h serum LH concentrations were similar in all groups of animals. Pituitary responsiveness to a challenge with 100 ng LHRH was potentiated by 50 or 100 ng buserelin injected 1 or 2 h before the LHRH challenge. In contrast, 250 ng buserelin completely abolished the LH response to LHRH when tested 1, 2 and 4 h after treatment, but by 6 h a small but attenuated response was observed. Four hours after treatment there was no significant difference in the responses when compared with the saline-treated controls. J. Endocr. (1985) 106, 27–30


Sign in / Sign up

Export Citation Format

Share Document