scholarly journals Glycomacropeptide, a low-phenylalanine protein isolated from cheese whey, supports growth and attenuates metabolic stress in the murine model of phenylketonuria

2012 ◽  
Vol 302 (7) ◽  
pp. E885-E895 ◽  
Author(s):  
Patrick Solverson ◽  
Sangita G. Murali ◽  
Adam S. Brinkman ◽  
David W. Nelson ◽  
Murray K. Clayton ◽  
...  

Phenylketonuria (PKU) is caused by a mutation in the phenylalanine (phe) hydroxylase gene and requires a low-phe diet plus amino acid (AA) formula to prevent cognitive impairment. Glycomacropeptide (GMP) contains minimal phe and provides a palatable alternative to AA formula. Our objective was to compare growth, body composition, and energy balance in Pahenu2 (PKU) and wild-type mice fed low-phe GMP, low-phe AA, or high-phe casein diets from 3–23 wk of age. The 2 × 2 × 3 design included main effects of genotype, sex, and diet. Fat and lean mass were assessed by dual-energy X-ray absorptiometry, and acute energy balance was assessed by indirect calorimetry. PKU mice showed growth and lean mass similar to wild-type littermates fed the GMP or AA diets; however, they exhibited a 3–15% increase in energy expenditure, as reflected in oxygen consumption, and a 3–30% increase in food intake. The GMP diet significantly reduced energy expenditure, food intake, and plasma phe concentration in PKU mice compared with the casein diet. The high-phe casein diet or the low-phe AA diet induced metabolic stress in PKU mice, as reflected in increased energy expenditure and intake of food and water, increased renal and spleen mass, and elevated plasma cytokine concentrations consistent with systemic inflammation. The low-phe GMP diet significantly attenuated these adverse effects. Moreover, total fat mass, %body fat, and the respiratory exchange ratio (CO2 produced/O2 consumed) were significantly lower in PKU mice fed GMP compared with AA diets. In summary, GMP provides a physiological source of low-phe dietary protein that promotes growth and attenuates the metabolic stress induced by a high-phe casein or low-phe AA diet in PKU mice.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Irene Cimino ◽  
Debra Rimmington ◽  
Y. C. Loraine Tung ◽  
Katherine Lawler ◽  
Pierre Larraufie ◽  
...  

AbstractNeuronatin (Nnat) has previously been reported to be part of a network of imprinted genes downstream of the chromatin regulator Trim28. Disruption of Trim28 or of members of this network, including neuronatin, results in an unusual phenotype of a bimodal body weight. To better characterise this variability, we examined the key contributors to energy balance in Nnat+/−p mice that carry a paternal null allele and do not express Nnat. Consistent with our previous studies, Nnat deficient mice on chow diet displayed a bimodal body weight phenotype with more than 30% of Nnat+/−p mice developing obesity. In response to both a 45% high fat diet and exposure to thermoneutrality (30 °C) Nnat deficient mice maintained the hypervariable body weight phenotype. Within a calorimetry system, food intake in Nnat+/−p mice was hypervariable, with some mice consuming more than twice the intake seen in wild type littermates. A hyperphagic response was also seen in Nnat+/−p mice in a second, non-home cage environment. An expected correlation between body weight and energy expenditure was seen, but corrections for the effects of positive energy balance and body weight greatly diminished the effect of neuronatin deficiency on energy expenditure. Male and female Nnat+/−p mice displayed subtle distinctions in the degree of variance body weight phenotype and food intake and further sexual dimorphism was reflected in different patterns of hypothalamic gene expression in Nnat+/−p mice. Loss of the imprinted gene Nnat is associated with a highly variable food intake, with the impact of this phenotype varying between genetically identical individuals.


1999 ◽  
Vol 24 ◽  
pp. 63-73 ◽  
Author(s):  
R. F. Veerkamp ◽  
E. P. C. Koenen

AbstractThe objectives of this study were to investigate genetic variation for traits that are part of the food utilization complex and to investigate the scope for future genetic improvement of traits possibly linked to metabolic stress: live weight (change), condition score (change) and energy balance. Many aspects of the food utilization complex appear to be heritable and are affected by genetic selection for yield. In general, genetic selection for yield increases intake and body tissue mobilization and energy balance is expected to decrease. However, unfavourable effects of genetic selection can be compensated for by measuring additional traits to be included in breeding programmes. Food intake, live weight (change) and condition score (change) are all potential options. Which traits should be measured, at what lactation stages and in which (nutritional) environment will merely depend on the coheritability with health and fertility, the genetic correlation with milk yield and the cost of measuring the trait effectively in a breeding programme.


1989 ◽  
Vol 67 (1) ◽  
pp. 14-18 ◽  
Author(s):  
C. H. Forbes-Ewan ◽  
B. L. Morrissey ◽  
G. C. Gregg ◽  
D. R. Waters

The doubly labeled water method was used to estimate the energy expended by four members of an Australian Army platoon (34 soldiers) engaged in training for jungle warfare. Each subject received an oral isotope dose sufficient to raise isotope levels by 200–250 (18O) and 100–120 ppm (2H). The experimental period was 7 days. Concurrently, a factorial estimate of the energy expenditure of the platoon was conducted. Also, a food intake-energy balance study was conducted for the platoon. Mean daily energy expenditure by the doubly labeled water method was 4,750 kcal (range 4,152–5,394 kcal). The factorial estimate of mean daily energy expenditure was 4,535 kcal. Because of inherent inaccuracies in the food intake-energy balance technique, we were able to conclude only that energy expenditure, as measured by this method, was greater than the estimated mean daily intake of 4,040 kcal. The doubly labeled water technique was well tolerated, is noninvasive, and appears to be suitable in a wide range of field applications.


2007 ◽  
Vol 192 (1) ◽  
pp. 3-15 ◽  
Author(s):  
David A Bechtold ◽  
Simon M Luckman

In the three decades since FMRFamide was isolated from the clam Macrocallista nimbosa, the list of RFamide peptides has been steadily growing. These peptides occur widely across the animal kingdom, including five groups of RFamide peptides identified in mammals. Although there is tremendous diversity in structure and biological activity in the RFamides, the involvement of these peptides in the regulation of energy balance and feeding behaviour appears consistently through evolution. Even so, questions remain as to whether feeding-related actions represent a primary function of the RFamides, especially within mammals. However, as we will discuss here, the study of RFamide function is rapidly expanding and with it so is our understanding of how these peptides can influence food intake directly as well as related aspects of feeding behaviour and energy expenditure.


2008 ◽  
Vol 295 (1) ◽  
pp. E78-E84 ◽  
Author(s):  
Sabine Strassburg ◽  
Stefan D. Anker ◽  
Tamara R. Castaneda ◽  
Lukas Burget ◽  
Diego Perez-Tilve ◽  
...  

Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol·kg−1·day−1 using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.


2009 ◽  
Vol 296 (3) ◽  
pp. R469-R475 ◽  
Author(s):  
Benjamin Guesdon ◽  
Éric Paradis ◽  
Pierre Samson ◽  
Denis Richard

The brain melanin-concentrating hormone (MCH) system represents an anabolic system involved in energy balance regulation through influences exerted on the homeostatic and nonhomeostatic controls of food intake and energy expenditure. The present study was designed to further delineate the effect of the MCH system on energy balance regulation by assessing the actions of the MCH receptor 1 (MCHR1) agonism on both food intake and energy expenditure after intracerebroventricular (third ventricle) and intra-nucleus-accumbens-shell (intraNAcSH) injections of a MCHR1 agonist. Total energy expenditure and substrate oxidation were assessed following injections in male Wistar rats using indirect calorimetry. Food intake was also measured. Pair-fed groups were added to evaluate changes in thermogenesis that would occur regardless of the meal size and its thermogenic response. Using such experimental conditions, we were able to demonstrate that acute MCH agonism in the brain, besides its orexigenic effect, induced a noticeable change in the utilization of the main metabolic fuels. In pair-fed animals, MCH significantly reduced lipid oxidation when it was injected in the third ventricle. Such an effect was not observed following the injection of MCH in the NAcSH, where MCH nonetheless strongly stimulated appetite. The present results further delineate the influence of MCH on energy expenditure and substrate oxidation while confirming the key role of the NAcSH in the effects of the MCH system on food intake.


Endocrinology ◽  
2016 ◽  
Vol 157 (4) ◽  
pp. 1457-1466 ◽  
Author(s):  
Miyuki Shibata ◽  
Ryoichi Banno ◽  
Mariko Sugiyama ◽  
Takashi Tominaga ◽  
Takeshi Onoue ◽  
...  

Abstract Agouti-related protein (AgRP) expressed in the arcuate nucleus is a potent orexigenic neuropeptide, which increases food intake and reduces energy expenditure resulting in increases in body weight (BW). Glucocorticoids, key hormones that regulate energy balance, have been shown in rodents to regulate the expression of AgRP. In this study, we generated AgRP-specific glucocorticoid receptor (GR)-deficient (knockout [KO]) mice. Female and male KO mice on a high-fat diet (HFD) showed decreases in BW at the age of 6 weeks compared with wild-type mice, and the differences remained significant until 16 weeks old. The degree of resistance to diet-induced obesity was more robust in female than in male mice. On a chow diet, the female KO mice showed slightly but significantly attenuated weight gain compared with wild-type mice after 11 weeks, whereas there were no significant differences in BW in males between genotypes. Visceral fat pad mass was significantly decreased in female KO mice on HFD, whereas there were no significant differences in lean body mass between genotypes. Although food intake was similar between genotypes, oxygen consumption was significantly increased in female KO mice on HFD. In addition, the uncoupling protein-1 expression in the brown adipose tissues was increased in KO mice. These data demonstrate that the absence of GR signaling in AgRP neurons resulted in increases in energy expenditure accompanied by decreases in adiposity in mice fed HFD, indicating that GR signaling in AgRP neurons suppresses energy expenditure under HFD conditions.


2008 ◽  
Vol 295 (2) ◽  
pp. E350-E355 ◽  
Author(s):  
Frank Isken ◽  
Andreas F. H. Pfeiffer ◽  
Rubén Nogueiras ◽  
Martin A. Osterhoff ◽  
Michael Ristow ◽  
...  

Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr−/−) were exposed to OVX or sham operation ( n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr−/− animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr−/− animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.


1986 ◽  
Vol 250 (2) ◽  
pp. R245-R249 ◽  
Author(s):  
D. Richard

This study was carried out to investigate the nutritional energetics of ovariectomized rats with or without ovarian hormone replacement. Rats were divided into five groups: 1) sham operated, 2) ovariectomized, 3) ovariectomized and treated with progesterone, 4) ovariectomized and treated with estradiol, or 5) ovariectomized and treated with estradiol and progesterone. After 36 days of treatment, energy contents of all five groups were determined together with energy content of food and feces. Brown adipose tissue thermogenesis was assessed through mitochondrial GDP binding assay. Results show that ovariectomy leads to a 16% increase in metabolizable energy intake. This increase was accompanied by a twofold increase in body energy gain. Progesterone did not further affect energy intake and gain in ovariectomized rats. However, increases in both food intake and energy gain were prevented by the estradiol replacement therapy. There was no difference in energy expenditure between sham-operated and ovariectomized rats in the absence of estradiol. In estradiol-treated animals, energy expenditure (kJ.kg body wt-0.75 . day-1) showed a slight increase. There was no difference in protein content of interscapular brown adipose tissue between all five groups. GDP binding was slightly reduced in ovariectomized estradiol-treated rats. It is concluded from this study that ovarian hormones produce their effects on energy balance mainly by altering food intake.


2012 ◽  
Vol 303 (5) ◽  
pp. R459-R476 ◽  
Author(s):  
Patrick C. Even ◽  
Nachiket A. Nadkarni

In this article, we review some fundamentals of indirect calorimetry in mice and rats, and open the discussion on several debated aspects of the configuration and tuning of indirect calorimeters. On the particularly contested issue of adjustment of energy expenditure values for body size and body composition, we discuss several of the most used methods and their results when tested on a previously published set of data. We conclude that neither body weight (BW), exponents of BW, nor lean body mass (LBM) are sufficient. The best method involves fitting both LBM and fat mass (FM) as independent variables; for low sample sizes, the model LBM + 0.2 FM can be very effective. We also question the common calorimetry design that consists of measuring respiratory exchanges under free-feeding conditions in several cages simultaneously. This imposes large intervals between measures, and generally limits data analysis to mean 24 h or day-night values of energy expenditure. These are then generally compared with energy intake. However, we consider that, among other limitations, the measurements of V̇o2, V̇co2, and food intake are not precise enough to allow calculation of energy balance in the small 2–5% range that can induce significant long-term alterations of energy balance. In contrast, we suggest that it is necessary to work under conditions in which temperature is set at thermoneutrality, food intake totally controlled, activity precisely measured, and data acquisition performed at very high frequency to give access to the part of the respiratory exchanges that are due to activity. In these conditions, it is possible to quantify basal energy expenditure, energy expenditure associated with muscular work, and response to feeding or to any other metabolic challenge. This reveals defects in the control of energy metabolism that cannot be observed from measurements of total energy expenditure in free feeding individuals.


Sign in / Sign up

Export Citation Format

Share Document