scholarly journals A return to ad libitum feeding following caloric restriction promotes hepatic steatosis in hyperphagic OLETF rats

2016 ◽  
Vol 311 (3) ◽  
pp. G387-G395 ◽  
Author(s):  
Melissa A. Linden ◽  
Justin A. Fletcher ◽  
Grace M. Meers ◽  
John P. Thyfault ◽  
M. Harold Laughlin ◽  
...  

Hyperphagic Otsuka Long-Evans Tokushima fatty (OLETF) rats develop obesity, insulin resistance, and nonalcoholic fatty liver disease (NAFLD), but lifestyle modifications, such as caloric restriction (CR), can prevent these conditions. We sought to determine if prior CR had protective effects on metabolic health and NAFLD development following a 4-wk return to ad libitum (AL) feeding. Four-week-old male OLETF rats ( n = 8–10/group) were fed AL for 16 wk (O-AL), CR for 16 wk (O-CR; ∼70% kcal of O-AL), or CR for 12 wk followed by 4 wk of AL feeding (O-AL4wk). CR-induced benefit in prevention of NAFLD, including reduced hepatic steatosis, inflammation, and markers of Kupffer cell activation/number, was largely lost in AL4wk rats. These findings occurred in conjunction with a partial loss of CR-induced beneficial effects on obesity and serum triglycerides in O-AL4wk rats, but in the absence of changes in serum glucose or insulin. CR-induced increases in hepatic mitochondrial respiration remained significantly elevated ( P < 0.01) in O-AL4wk compared with O-AL rats, while mitochondrial [1-14C]palmitate oxidation, citrate synthase activity, and β-hydroxyacyl-CoA dehydrogenase activity did not differ among OLETF groups. NAFLD development in O-AL4wk rats was accompanied by increases in the protein content of the de novo lipogenesis markers fatty acid synthase and stearoyl-CoA desaturase-1 and decreases in phosphorylated acetyl-CoA carboxylase (pACC)/ACC compared with O-CR rats ( P < 0.05 for each). The beneficial effects of chronic CR on NAFLD development were largely lost with 4 wk of AL feeding in the hyperphagic OLETF rat, highlighting the importance of maintaining energy balance in the prevention of NAFLD.

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Xiaobing Cui ◽  
Junna Luan ◽  
Shiyou Chen

Hepatic steatosis is associated with obesity due to the increased lipogenesis. Previously, we have found that RGC-32 (response gene to complement 32) deficiency prevents the mice from high-fat diet (HFD)-induced obesity and insulin resistance. The present study was conducted to determine the role of RGC-32 in the control of hepatic steatosis. We observed that hepatic RGC-32 expression was dramatically induced by HFD challenge. RGC-32 knockout (RGC32-/-) mice were resistant to HFD-induced hepatic steatosis. More importantly, hepatic triglyceride contents of RGC32-/- mice were significantly decreased compared with wild-type (WT) controls on both normal chow and HFD. Mechanistically, RGC-32 deficiency decreased expression of lipogenesis-related genes, sterol regulatory element (SRE) binding protein (SREBP)-1c, fatty acid synthase (FAS) and stearoyl-CoA desaturase-1 (SCD1). Our in vitro study showed that RGC-32 knockdown decreased while RGC-32 overexpression increased SCD1 expression in hepatocytes. Deletion or mutation of SRE in the SCD1 promoter abolished the function of RGC-32. These data demonstrate that RGC-32 contributes to HFD-induced hepatic steatosis by facilitating de novo lipogenesis in a SREBP-1c dependent manner. Therefore, RGC-32 may be a novel drug target in the treatment of hepatic steatosis and its related diseases.


2015 ◽  
Vol 40 (10) ◽  
pp. 1038-1047 ◽  
Author(s):  
Melissa A. Linden ◽  
Kristi T. Lopez ◽  
Justin A. Fletcher ◽  
E. Matthew Morris ◽  
Grace M. Meers ◽  
...  

Weight loss is recommended for patients with nonalcoholic fatty liver disease (NAFLD), while metformin may lower liver enzymes in type 2 diabetics. Yet, the efficacy of the combination of weight loss and metformin in the treatment of NAFLD is unclear. We assessed the effects of metformin, caloric restriction, and their combination on NAFLD in diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Male OLETF rats (age 20 weeks; n = 6–8 per group) were fed ad libitum (AL), given metformin (300 mg·kg−1·day−1; Met), calorically restricted (70% of AL; CR), or calorically restricted and given metformin (CR+Met) for 12 weeks. Met lowered adiposity compared with AL but not to the same magnitude as CR or CR+Met (p < 0.05). Although only CR improved fasting insulin and glucose, the combination of CR+Met was needed to improve post-challenge glucose tolerance. All treatments lowered hepatic triglycerides, but further improvements were observed in the CR groups (p < 0.05, Met vs. CR or CR+Met) and a further reduction in serum alanine aminotransferases was observed in CR+Met rats. CR lowered markers of hepatic de novo lipogenesis (fatty acid synthase, acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase-1 (SCD-1)) and increased hepatic mitochondrial activity (palmitate oxidation and β-hydroxyacyl CoA dehydrogenase (β-HAD) activity). Changes were enhanced in the CR+Met group for ACC, SCD-1, β-HAD, and the mitophagy marker BNIP3. Met decreased total hepatic mTOR content and inhibited mTOR complex 1, which may have contributed to Met-induced reductions in de novo lipogenesis. These findings in the OLETF rat suggest that the combination of caloric restriction and metformin may provide a more optimal approach than either treatment alone in the management of type 2 diabetes and NAFLD.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Sarah J. Borengasser ◽  
R. Scott Rector ◽  
Grace M. Uptergrove ◽  
E. Matthew Morris ◽  
James W. Perfield ◽  
...  

Background and Aims.This study examined if exercise and omega-3 fatty acid (n3PUFA) supplementation is an effective treatment for hepatic steatosis in obese, hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats.Methods.Male OLETF rats were divided into 4 groups (n=8/group): (1) remained sedentary (SED), (2) access to running wheels; (EX) (3) a diet supplemented with 3% of energy from fish oil (n3PUFA-SED); and (4) n3PUFA supplementation plus EX (n3PUFA+EX). The 8 week treatments began at 13 weeks, when hepatic steatosis is present in OLETF-SED rats.Results.EX alone lowered hepatic triglyceride (TAG) while, in contrast, n3PUFAs failed to lower hepatic TAG and blunted the ability of EX to decrease hepatic TAG levels in n3PUFAs+EX. Insulin sensitivity was improved in EX animals, to a lesser extent in n3PUFA+EX rats, and did not differ between n3PUFA-SED and SED rats. Only the EX group displayed higher complete hepatic fatty acid oxidation (FAO) to CO2and carnitine palmitoyl transferase-1 activity. EX also lowered hepatic fatty acid synthase protein while both EX and n3PUFA+EX decreased stearoyl CoA desaturase-1 protein.Conclusions.Exercise lowers hepatic steatosis through increased complete hepatic FAO, insulin sensitivity, and reduced expression ofde novofatty acid synthesis proteins while n3PUFAs had no effect.


Author(s):  
Aisha Rehman ◽  
Kosha J. Mehta

AbstractAlcohol-associated liver disease (AALD) is one of most common chronic liver diseases. Hepatic steatosis is the earliest stage in AALD pathological spectrum, reversible by alcohol abstinence. Untreated steatosis can progress to steatohepatitis, fibrosis and/or cirrhosis. Considering the difficulties in achieving complete abstinence, challenges in disease reversal at advanced stages, high costs of AALD management and lack of standardised prescribed medications for treatment, it is essential to explore low-cost natural compounds that can target AALD at an early stage and halt or decelerate disease progression. Betaine is a non-hazardous naturally occurring nutrient. Here, we address the mechanisms of alcohol-induced hepatic steatosis, the role of betaine in reversing the effects i.e., its action against hepatic steatosis in animal models and humans, and the associated cellular and molecular processes. Accordingly, the review discusses how betaine restores the alcohol-induced reduction in methylation potential by elevating the levels of S-adenosylmethionine and methionine. It details how betaine reinstates alcohol-induced alterations in the expressions and/or activities of protein phosphtase-2A, FOXO1, PPAR-α, AMPK, SREBP-1c, fatty acid synthase, diacylglycerol transferase-2, adiponectin and nitric oxide. Interrelationships between these factors in preventing de novo lipogenesis, reducing hepatic uptake of adipose-tissue-derived free fatty acids, promoting VLDL synthesis and secretion, and restoring β-oxidation of fatty acids to attenuate hepatic triglyceride accumulation are elaborated. Despite its therapeutic potential, very few clinical trials have examined betaine’s effect on alcohol-induced hepatic lipid accumulation. This review will provide further confidence to conduct randomised control trials to enable maximum utilisation of betaine’s remedial properties to treat alcohol-induced hepatic steatosis.


2011 ◽  
Vol 39 (2) ◽  
pp. 495-499 ◽  
Author(s):  
Caroline A. Lewis ◽  
Beatrice Griffiths ◽  
Claudio R. Santos ◽  
Mario Pende ◽  
Almut Schulze

In recent years several reports have linked mTORC1 (mammalian target of rapamycin complex 1) to lipogenesis via the SREBPs (sterol-regulatory-element-binding proteins). SREBPs regulate the expression of genes encoding enzymes required for fatty acid and cholesterol biosynthesis. Lipid metabolism is perturbed in some diseases and SREBP target genes, such as FASN (fatty acid synthase), have been shown to be up-regulated in some cancers. We have previously shown that mTORC1 plays a role in SREBP activation and Akt/PKB (protein kinase B)-dependent de novo lipogenesis. Our findings suggest that mTORC1 plays a crucial role in the activation of SREBP and that the activation of lipid biosynthesis through the induction of SREBP could be part of a regulatory pathway that co-ordinates protein and lipid biosynthesis during cell growth. In the present paper, we discuss the increasing amount of data supporting the potential mechanisms of mTORC1-dependent activation of SREBP as well as the implications of this signalling pathway in cancer.


2021 ◽  
Author(s):  
Caterina Bartolacci ◽  
Cristina Andreani ◽  
Goncalo Dias do Vale ◽  
Stefano Berto ◽  
Margherita Melegari ◽  
...  

Mutant KRAS (KM) is the most common oncogene in lung cancer (LC). KM regulates several metabolic networks, but their role in tumorigenesis is still not sufficiently characterized to be exploited in cancer therapy. To identify metabolic networks specifically deregulated in KMLC, we characterized the lipidome of genetically engineered LC mice, cell lines, patient derived xenografts and primary human samples. We also determined that KMLC, but not EGFR-mutant (EGFR-MUT) LC, is enriched in triacylglycerides (TAG) and phosphatidylcholines (PC). We also found that KM upregulates fatty acid synthase (FASN), a rate-limiting enzyme in fatty acid (FA) synthesis promoting the synthesis of palmitate and PC. We determined that FASN is specifically required for the viability of KMLC, but not of LC harboring EGFR-MUT or wild type KRAS. Functional experiments revealed that FASN inhibition leads to ferroptosis, a reactive oxygen species (ROS)-and iron-dependent cell death. Consistently, lipidomic analysis demonstrated that FASN inhibition in KMLC leads to accumulation of PC with polyunsaturated FA (PUFA) chains, which are the substrate of ferroptosis. Integrating lipidomic, transcriptome and functional analyses, we demonstrated that FASN provides saturated (SFA) and monounsaturated FA (MUFA) that feed the Lands cycle, the main process remodeling oxidized phospholipids (PL), such as PC. Accordingly, either inhibition of FASN or suppression of the Lands cycle enzymes PLA2 and LPCAT3, promotes the intracellular accumulation of lipid peroxides and ferroptosis in KMLC both in vitro and in vivo. Our work supports a model whereby the high oxidative stress caused by KM dictates a dependency on newly synthesized FA to repair oxidated phospholipids, establishing a targetable vulnerability. These results connect KM oncogenic signaling, FASN induction and ferroptosis, indicating that FASN inhibitors already in clinical trial in KMLC patients (NCT03808558) may be rapidly deployed as therapy for KMLC.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A48-A48
Author(s):  
Maria del Carmen Vazquez Borrego ◽  
Mercedes del Rio Moreno ◽  
Andre Sarmento-Cabral ◽  
Mariyah Mahmood ◽  
Papasani V Subbaiah ◽  
...  

Abstract A reduction in GH, as well as IGF1, is associated with non-alcoholic fatty liver disease (NAFLD). However, the relative contribution of changes in circulating GH and IGF1, to hepatic triglyceride accumulation (steatosis), remains to be clearly defined. To study the direct actions of GH on hepatocyte metabolism, we have utilized a mouse model of adult-onset, hepatocyte-specific, GHR knockdown (aHepGHRkd; 10–12 week-old, GHRfl/fl male mice, treated with AAV8-TBGp-Cre). In this and previous reports, we have observed that aHepGHRkd male mice rapidly develop steatosis (after 7 days) associated with enhanced de novo lipogenesis (DNL; measured by deuterated H2O labeling, 10h after 0800h food removal), and low ketone levels, suggestive of reduced hepatic β-oxidation. Of note, aHepGHRkd also reduces plasma IGF1 levels to &gt;80% of GHR-intact controls (GHRfl/fl mice treated with AAV8-TBGp-Null), leading to a rise in GH, due to loss of IGF1 negative feedback to the pituitary/hypothalamus. This reciprocal shift in IGF1/GH is associated with an increase in insulin levels. Therefore, it is possible that the steatosis that develops in aHepGHRkd mice is the consequence of systemic insulin resistance supplying excess substrates (glucose and NEFA) for hepatic lipogenesis. However, inconsistent with this theory is the fact that glucose and NEFA levels are not altered after aHepGHRkd. To tease out the indirect (perhaps driven by high insulin levels) vs. direct effects of GH on hepatocyte lipid accumulation, male aHepGHRkd mice were injected with a vector expressing rat IGF1 (AAV8-TBGp-rIGF1). Reconstitution of hepatocyte IGF1 in aHepGHRkd mice, raised plasma IGF1 and normalized GH, insulin and ketone levels, but hepatic steatosis and DNL remained greater than that of GHR-intact controls, indicating GH directly suppresses hepatic fat accumulation. RNAseq analysis of livers from aHepGHRkd mice showed expression of genes related to carbohydrate metabolism (Gck, Khk) and fatty acid synthesis (Fasn, Srebf1, Usf1), processing (Scd1) and uptake (Cd36) were increased, while genes related to gluconeogenesis (Pck1, Fbp1, G6pc) were reduced. Remarkably, IGF1 reconstitution had no major impact on the hepatic transcriptome of aHepGHRkd mice, with the exception of reducing the expression of Srebf1, consistent with the reduction in circulating insulin levels. Interestingly, carbohydrate-responsive element-binding protein (CHREBP) levels, but not mRNA levels, were greater in aHepGHRkd mice with or without IGF1 reconstitution, consistent with upregulation of CHREBP target genes (Khk and Fasn among others). Taken together, these results suggest GH directly regulates steatosis, at least in part, by suppressing carbohydrate-driven DNL, where additional studies are underway to test this hypothesis.


Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 511 ◽  
Author(s):  
Hollis Wright ◽  
Mithila Handu ◽  
Allen Jankeel ◽  
Ilhem Messaoudi ◽  
Oleg Varlamov

White adipose tissue (WAT) hypertrophy is an essential hallmark of obesity and is associated with the activation of resident immune cells. While the benefits of caloric restriction (CR) on health span are generally accepted, its effects on WAT physiology are not well understood. We previously demonstrated that short-term CR reverses obesity in male rhesus macaques exposed to a high-fat Western-style diet (WSD). Here, we analyzed subcutaneous WAT biopsies collected from this cohort of animals before and after WSD and following CR. This analysis showed that WSD induced adipocyte hypertrophy and inhibited β-adrenergic-simulated lipolysis. CR reversed adipocyte hypertrophy, but WAT remained insensitive to β-adrenergic agonist stimulation. Whole-genome transcriptional analysis revealed that β3-adrenergic receptor and de novo lipogenesis genes were downregulated by WSD and remained downregulated after CR. In contrast, WSD-induced pro-inflammatory gene expression was effectively reversed by CR. Furthermore, peripheral blood monocytes isolated during the CR period exhibited a significant reduction in the production of pro-inflammatory cytokines compared to those obtained after WSD. Collectively, this study demonstrates that short-term CR eliminates an obesity-induced pro-inflammatory response in WAT and peripheral monocytes.


2019 ◽  
Vol 10 (6) ◽  
pp. 3410-3420 ◽  
Author(s):  
Cong Zhang ◽  
Junjie Hu ◽  
Lei Sheng ◽  
Ming Yuan ◽  
Yong Wu ◽  
...  

Ellagic acid alleviates hepatic lipid accumulation in mice by suppressing AKT-driven de novo lipogenesis.


Sign in / Sign up

Export Citation Format

Share Document