Toll-like receptor (TLR) 2 induced through TLR4 signaling initiated byHelicobacter pyloricooperatively amplifies iNOS induction in gastric epithelial cells

2007 ◽  
Vol 293 (5) ◽  
pp. G1004-G1012 ◽  
Author(s):  
Kaname Uno ◽  
Katsuaki Kato ◽  
Tomoaki Atsumi ◽  
Takehito Suzuki ◽  
Jun Yoshitake ◽  
...  

Cell-surface Toll-like receptors (TLRs) initiate innate immune responses, such as inducible nitric oxide synthase (iNOS) induction, to microorganisms' surface pathogens. TLR2 and TLR4 play important roles in gastric mucosa infected with Helicobacter pylori ( H. pylori), which contains lipopolysaccharide (LPS) as a pathogen. The present study investigates their physiological roles in the innate immune response of gastric epithelial cells to H. pylori-LPS. Changes in the expression of iNOS, TLR2, and TLR4, as well as downstream activation of mitogen-activated protein kinases and nuclear factor-κB (NF-κB), were analyzed in normal mouse gastric mucosal GSM06 cells following stimulation with H. pylori-LPS and interferon-γ. Specific inhibitors for mitogen-activated protein kinases, NF-κB, and small interfering RNA for TLR2 or TLR4 were employed. The immunohistochemistry of TLR2 was examined in human gastric mucosa. H. pylori-LPS stimulation induced TLR2 in GSM06 cells, but TLR4 was unchanged. TLR2 induction resulted from TLR4 signaling that propagated through extracellular signal-related kinase and NF-κB activation, as corroborated by the decline in TLR4 expression on small interfering RNA treatment and pretreatment with inhibitors. The induction of iNOS and the associated nitric oxide production in response to H. pylori-LPS stimulation were inhibited by declines in not only TLR4 but also TLR2. Increased expression of TLR2 was identified in H. pylori-infected human gastric mucosa. TLR4 signaling initiated by H. pylori-LPS and propagated via extracellular signal-regulated kinase and NF-κB activation induced TLR2 expression in gastric epithelial cells. Induced TLR2 cooperated with TLR4 to amplify iNOS induction. This positive correlation may constitute a mechanism for stimulating the innate immune response against various bacterial pathogens, including H. pylori-LPS.

2018 ◽  
Vol 51 (3) ◽  
pp. 1250-1263 ◽  
Author(s):  
Fengying Sun ◽  
Ying Ni ◽  
Hong Zhu ◽  
Jian Fang ◽  
Hua Wang ◽  
...  

Background/Aims: Helicobacter pylori (H. pylori) infection is closely related to human gastric mucosa-associated diseases. Several recent studies on miRNAs have expanded our insights on H.pylori pathogenesis. This study aimed to investigate the biological roles and underlying molecular mechanisms of miR-29a-3p in human gastric cells and tissues with H.pylori infection. Methods: miR-29a-3p expression was quantified by quantitative RT-PCR (qRT-PCR). A miR-29a-3p target gene was validated by bioinformatics analysis, western blotting and dual luciferase reporter gene assays. Western blotting and immunohistochemistry (IHC) assay were performed to detect the protein expression. Transwell assay was used to determine the cell migration ability. Results: MiR-29a-3p was up-regulated in H.pylori-positive gastric mucosa tissues and H.pylori-infected gastric cells. The up-regulation of miR-29a-3p was dose-dependent in BGC-823 and GES-1 cells infected with H.pylori. Using gain- and loss-of-function experiments in vitro, we demonstrated that miR-29a-3p promoted the migration of gastric epithelial cells. We further characterized A20 as a direct target of miR-29a-3p. The expression of A20 was decreased in H.pylori-positive gastric mucosa tissues compared with H.pylori-negative gastric mucosa tissues. A20 downregulation was time- and dose-dependent in GES-1 and BGC-823 cells infected with H.pylori. In GES-1 and BGC-823 cells infected with H.pylori, the miR-29a-3p mimic significantly blocked A20 expression, which suggests that H.pylori decreased A20 expression through up-regulating miR-29a-3p in GES-1 and BGC-823 cells infected with H.pylori. The knockdown of A20 by siRNA enhanced the migration of human gastric epithelial cells and promoted the expression of Snail, Vimentin, and N-cadherin and inhibited the expression of E-cadherin. Conclusion: The miR-29a-3p may act as a tumor promotive miRNA by regulating cells migration through directly targeting of A20 gene in human gastric epithelial cells infected with H.pylori.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Alevtina Gall ◽  
Ryan G. Gaudet ◽  
Scott D. Gray-Owen ◽  
Nina R. Salama

ABSTRACT Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, causing inflammation which, in some cases, leads to gastric ulcers and cancer. The clinical outcome of infection depends on a complex interplay of bacterial, host genetic, and environmental factors. Although H. pylori is recognized by both the innate and adaptive immune systems, this rarely results in bacterial clearance. Gastric epithelial cells are the first line of defense against H. pylori and alert the immune system to bacterial presence. Cytosolic delivery of proinflammatory bacterial factors through the cag type 4 secretion system ( cag -T4SS) has long been appreciated as the major mechanism by which gastric epithelial cells detect H. pylori . Classically attributed to the peptidoglycan sensor NOD1, recent work has highlighted the role of NOD1-independent pathways in detecting H. pylori ; however, the bacterial and host factors involved have remained unknown. Here, we show that bacterially derived heptose-1,7-bisphosphate (HBP), a metabolic precursor in lipopolysaccharide (LPS) biosynthesis, is delivered to the host cytosol through the cag -T4SS, where it activates the host tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA)-dependent cytosolic surveillance pathway. This response, which is independent of NOD1, drives robust NF-κB-dependent inflammation within hours of infection and precedes NOD1 activation. We also found that the CagA toxin contributes to the NF-κB-driven response subsequent to TIFA and NOD1 activation. Taken together, our results indicate that the sequential activation of TIFA, NOD1, and CagA delivery drives the initial inflammatory response in gastric epithelial cells, orchestrating the subsequent recruitment of immune cells and leading to chronic gastritis. IMPORTANCE H. pylori is a globally prevalent cause of gastric and duodenal ulcers and cancer. H. pylori antibiotic resistance is rapidly increasing, and a vaccine remains elusive. The earliest immune response to H. pylori is initiated by gastric epithelial cells and sets the stage for the subsequent immunopathogenesis. This study revealed that host TIFA and H. pylori -derived HBP are critical effectors of innate immune signaling that account for much of the inflammatory response to H. pylori in gastric epithelial cells. HBP is delivered to the host cell via the cag -T4SS at a time point that precedes activation of the previously described NOD1 and CagA inflammatory pathways. Manipulation of the TIFA-driven immune response in the host and/or targeting of ADP-heptose biosynthesis enzymes in H. pylori may therefore provide novel strategies that may be therapeutically harnessed to achieve bacterial clearance.


2019 ◽  
Vol 2 (3) ◽  
pp. 83-99
Author(s):  
T.W. Wan ◽  
O. Khokhlova ◽  
W. Higuchi ◽  
I. Protasova ◽  
Olga V. Peryanova ◽  
...  

Abstract Helicobacter pylori, one of the most prevalent human pathogens, colonizes the gastric mucosa and is associated with gastric diseases, such as gastritis and peptic ulcers, and is also a bacterial risk factor for gastric cancer. Cytotoxin-associated gene A (CagA) protein, a major virulence factor of H. pylori, is phosphorylated in cells at its Glu-Pro-IIe-Tyr-Ala (EPIYA) motif and is considered to trigger gastric cancer. CagA is classified into two forms, Western CagA with EPIYA-ABC and East Asian CagA with EPIYA-ABD, with the latter associated with a high risk of developing gastric cancer. CagA causes morphological transformation of cells, yielding the “hummingbird” phenotype in AGS cells and possibly membranous pedestals in the gastric epithelium, albeit rarely. H. pylori adherence to the gastric mucosa is not yet fully understood. Here, we describe an intrafamilial infection case of H. pylori, focusing on the gastric epithelium, H. pylori adherence, and a gene mutation in a child with protein-losing gastroenteropathy (characterized by excessive loss of plasma proteins into the gastrointestinal tract). H. pylori, which also infected family members (mother and father), was genetically a single clone with the virulence genes of an East Asian type. The patient’ gastric mucosa exhibited some unique features. Endoscopy revealed the presence of protein plugs on the mucosal surface, which were immunoelectrophoretically similar to serum proteins. Electron microscopy revealed abnormal gastric epithelial cells, totally covered with the secretions or possessing small swollen structures and irregular microvilli. The patient’s H. pylori infection was characterized by frequently occurring thick pedestals, formed along adherent H. pylori. The serum protein level returned to normal and the protein plugs disappeared after the successful eradication of H. pylori, albeit with lag periods for healing. He had a mutation in the OCRL1 gene, associated with Dent disease (asymptomatic proteinuria). Thus, in the patient’s gastric mucosa, we found the abnormal gastric epithelial cells, which may be caused by an OCRL1 mutation or H. pylori, and pedestal-rich H. pylori infection, possibly caused by a higher level of action of CagA in the abnormal epithelial cells. The data suggests a novel H. pylori virulence factor associated with “excessive plasma protein release”.


2011 ◽  
Vol 135 (6) ◽  
pp. 759-765
Author(s):  
So-Hyun Shin ◽  
Seog-Yun Park ◽  
Jae-Sung Ko ◽  
Nayoung Kim ◽  
Gyeong Hoon Kang

Abstract Context.—Helicobacter pylori infection is primarily acquired during childhood and persists throughout life in the absence of eradication with antibiotics. Helicobacter pylori infection induces methylation in the promoter CpG island loci in gastric epithelial cells. Thus, aberrant CpG island hypermethylation in gastric epithelial cells likely occurs early in life, although there are no existing data supporting this notion. Objectives.—To identify whether aberrant CpG island hypermethylation occurs in pediatric stomach mucosa in association with H pylori infection and to compare methylation profiles of samples from pediatric and adult stomach tissues. Design.—We analyzed pediatric (n  =  47) and adult (n  =  38) gastric mucosa samples for their methylation status in 12 promoter CpG island loci using the MethyLight assay and compared the number of methylated genes and the methylation levels in individual genes between H pylori–positive and H pylori–negative sample results and between pediatric and adult samples. Results.—The average number of methylated genes was significantly higher in H pylori–infected pediatric samples than in H pylori–negative pediatric samples (3.4 versus 0.3, P < .001) and in H pylori–infected adult samples than in H pylori–negative adult samples (7.6 versus 0.9, P < .001). Seven genes showed significantly higher methylation levels in H pylori–infected pediatric samples than in H pylori–negative pediatric samples (all values were P < .05). Conclusions.—These results indicate that CpG island hypermethylation occurs in pediatric gastric mucosa in association with H pylori infection and that the genes affected by H pylori–associated hypermethylation were similar in pediatric and adult samples.


2003 ◽  
Vol 71 (7) ◽  
pp. 3748-3756 ◽  
Author(s):  
Naoki Mori ◽  
Alan M. Krensky ◽  
Romas Geleziunas ◽  
Akihiro Wada ◽  
Toshiya Hirayama ◽  
...  

ABSTRACT Helicobacter pylori-infected gastric mucosa displays a conspicuous infiltration of mononuclear cells and neutrophils. RANTES (short for “regulated upon activation, normal T cell expressed and secreted”) is a chemoattractant cytokine (chemokine) important in the infiltration of T lymphocytes and monocytes. RANTES may therefore contribute to the cellular infiltrate in the H. pylori-infected gastric mucosa. The aim of this study was to analyze the molecular mechanism responsible for H. pylori-mediated RANTES expression. We observed that gastric epithelial cells produced RANTES upon coculture with H. pylori. In addition, H. pylori induced RANTES mRNA expression and an increase in luciferase activity in cells which were transfected with a luciferase reporter construct derived from the RANTES promoter, in gastric epithelial cells, indicating that the induction of RANTES production occurred at the transcriptional level. Induction of RANTES was dependent on an intact cag pathogenicity island. Activation of the RANTES promoter by H. pylori occurred through the action of NF-κB. Transfection of kinase-deficient mutants of IκB kinase (IKK) and NF-κB-inducing kinase (NIK) inhibited H. pylori-mediated RANTES activation. In contrast, tumor necrosis factor alpha- or interleukin-1/Toll-like receptor signaling molecules—such as mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1, MyD88, and interleukin-1 receptor-associated kinase—did not play a role in RANTES activation by H. pylori. Collectively, H. pylori induced NF-κB activation through an intracellular signaling pathway that involved IKK and NIK, leading to RANTES gene transcription. RANTES induction by H. pylori may play an important role in gastric inflammation.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1385
Author(s):  
Weronika Gonciarz ◽  
Agnieszka Krupa ◽  
Anthony P. Moran ◽  
Agata Tomaszewska ◽  
Magdalena Chmiela

Background: Lipopolysaccharide (LPS) of Helicobacter pylori (Hp) bacteria causes disintegration of gastric tissue cells in vitro. It has been suggested that interleukin (IL)-33 is involved in healing gastric injury. Aim: To elucidate whether Hp LPS affects regeneration of gastric barrier initiated by IL-33. Methods: Primary gastric epithelial cells or fibroblasts from Caviae porcellus were transfected with siRNA IL-33. Such cells, not exposed or treated with LPS Hp, were sub-cultured in the medium with or without exogenous IL-33. Then cell migration was assessed in conjunction with oxidative stress and apoptosis, activation of extracellular signal-regulated kinase (Erk), production of collagen I and soluble ST2 (IL-33 decoy). Results: Control cells not treated with LPS Hp migrated in the presence of IL-33. The pro-regenerative activity of IL-33 was related to stimulation of cells to collagen I production. Wound healing by cells exposed to LPS Hp was inhibited even in the presence of IL-33. This could be due to increased oxidative stress and apoptosis in conjunction with Erk activation, sST2 elevation and modulation of collagen I production. Conclusions: The recovery of gastric barrier cells during Hp infection potentially can be affected due to downregulation of pro-regenerative activity of IL-33 by LPS Hp.


2018 ◽  
Author(s):  
Hui Kong ◽  
Jin-yu Zhang ◽  
Fang-yuan Mao ◽  
Yong-sheng Teng ◽  
Yi-pin Lv ◽  
...  

AbstractAdrenomedullin (ADM) is a multifunctional peptide that is expressed by many surface epithelial cells, but its relevance to H. pylori-induced gastritis is unknown. Here, we found that gastric ADM expression was elevated in gastric mucosa of H. pylori-infected patients and mice. In H. pylori-infected human gastric mucosa, ADM expression was positively correlated with the degree of gastritis, accordingly, blockade of ADM resulted in decreased inflammation within the gastric mucosa of H. pylori-infected mice. During H. pylori infection, ADM production was promoted via PI3K-AKT signaling pathway activation by gastric epithelial cells in a cagA-dependent manner, and resulted in increased inflammation within the gastric mucosa. This inflammation was characterized by the increased IFN-γ-producing T cells, whose differentiation was induced via the phosphorylation of AKT and STAT3 by ADM derived from gastric epithelial cells. ADM also induced macrophages to produce IL-12, which promoted the IFN-γ-producing T-cell responses, thereby contributing to the development of H. pylori-associated gastritis. Accordingly, blockade of IFN-γ or knockout of IFN-γ decreased inflammation within the gastric mucosa of H. pylori-infected mice. This study identifies a novel regulatory network involving H. pylori, gastric epithelial cells, ADM, macrophages, T cells, and IFN-γ, which collectively exert a pro-inflammatory effect within the gastric microenvironment.Author summaryH. pylori infect almost half the world’s population. Once infected, most of people carry the bacteria lifelong if left untreated, so that persistent H. pylori infection can lead to chronic gastritis, peptic ulceration and ultimately gastric cancer. H. pylori infection is accompanied with increased inflammation in gastric mucosa, but the mechanisms of chronic gastritis induced by H. pylori infection remains poorly understood. We studied a multifunctional peptide known as adrenomedullin (ADM) in gastric epithelial cells, which was known as a key factor of regulating gastrointestinal physiology and pathology. Here, we found that gastric ADM expression was elevated in gastric mucosa of H. pylori-infected patients and mice, and was positively correlated with the degree of gastritis. ADM production was promoted via PI3K-AKT signaling pathway activation by gastric epithelial cells in a cagA-dependent manner. Blockade of ADM during H. pylori infection resulted in decreased gastric inflammation that was characterized by the increased IFN-γ-producing T cells which was induced via the phosphorylation of AKT and STAT3 by ADM derived from gastric epithelial cells. ADM also induced macrophages to produce IL-12, which promoted the IFN-γ-producing T-cell responses. These data demonstrate that H. pylori-induced ADM modulates FN-γ-producing T-cell responses and contribute to gastritis.


2019 ◽  
pp. 1-12
Author(s):  
Taslima T. Lina ◽  
Jazmin Gonzalez ◽  
Irina V. Pinchuk ◽  
Ellen J. Beswick ◽  
Victor E. Reyes

Helicobacter pylori (H. pylori) is a gram-negative bacterium that infects more than 50% of humanity and is associated with gastritis, peptic ulcer and gastric cancer. Although CD4+ T cells are recruited to the gastric mucosa, the host is unable to clear the bacteria. Previously, we demonstrated that H. pylori infection upregulates the expression of the T cell co-inhibitory molecule B7-H1 while simultaneously downregulating the expression of T cell co-stimulatory molecule B7-H2 on gastric epithelial cells (GEC), which together affect the Treg and Th17 cell balance and foster bacterial persistence. Because B7-H3, another member of the B7 family of co-inhibitory receptors, has been found to have important immunoregulatory roles and in cancer, in this study we examined the expression of B7-H3 molecules on GEC and how the expression is regulated by H. pylori during infection. Our study showed that both human and murine GEC constitutively express B7-H3 molecules, but their expression levels increased during H. pylori infection. We further demonstrated that H. pylori uses its type 4 secretion system (T4SS) components CagA and cell wall peptidoglycan (PG) fragment to upregulate B7-H3. Th17 cells and Treg cells which are increased during H. pylori infection also had an effect on B7-H3 induction. The underlying cell signaling pathway involves modulation of p38MAPK pathway. Since B7-H3 were shown to up-regulate Th2 responses, the phenotype of T cell subpopulations in mice infected with H. pylori PMSS1 (contains functional T4SS) or SS1 (cannot deliver CagA into GEC) strains were characterized. A mixed Th1/Th2 response in H. pylori infected mice was observed. Consistent with previous findings, increased Treg cells and decreased Th17 cells in MLN of PMSS1 infected mice compared to SS1 infected mice was observed. Human biopsy samples collected from gastritis biopsies and gastric tumors showed a strong association between increased B7-H3 and Th2 responses in H. pylori strains associated with gastritis. T cell: GEC co-cultures and anti-B7-H3 blocking Ab confirmed that the induction of Th2 is mediated by B7-H3 and associated exclusively with an H. pylori gastritis strain not cancer or ulcer strains. In conclusion, these studies revealed a novel regulatory mechanism employed by H. pylori to influence the type of T cell response that develops within the infected gastric mucosa.


2009 ◽  
Vol 78 (1) ◽  
pp. 468-476 ◽  
Author(s):  
Shin-ichi Yokota ◽  
Tamaki Okabayashi ◽  
Michael Rehli ◽  
Nobuhiro Fujii ◽  
Ken-ichi Amano

ABSTRACT Helicobacter pylori is recognized as an etiological agent of gastroduodenal diseases. H. pylori produces various toxic substances, including lipopolysaccharide (LPS). However, H. pylori LPS exhibits extremely weakly endotoxic activity compared to the typical LPS, such as that produced by Escherichia coli, which acts through Toll-like receptor 4 (TLR4) to induce inflammatory molecules. The gastric epithelial cell lines MKN28 and MKN45 express TLR4 at very low levels, so they show very weak interleukin-8 (IL-8) production in response to E. coli LPS, but pretreatment with H. pylori LPS markedly enhanced IL-8 production induced by E. coli LPS by upregulating TLR4 via TLR2 and the MEK1/2-ERK1/2 pathway. The transcription factor NF-Y was activated by this signal and promoted transcription of the tlr4 gene. These MEK1/2-ERK1/2 signal-mediated activities were more potently activated by LPS carrying a weakly antigenic epitope, which is frequently found in gastric cancers, than by LPS carrying a highly antigenic epitope, which is associated with chronic gastritis. H. pylori LPS also augmented the proliferation rate of gastric epithelial cells via the MEK1/2-ERK1/2 pathway. H. pylori LPS may be a pathogenic factor causing gastric tumors by enhancing cell proliferation and inflammation via the MEK1/2-ERK1/2 mitogen-activated protein kinase cascade in gastric epithelial cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Chuan Xie ◽  
Jian Yi ◽  
Jing Lu ◽  
Muwen Nie ◽  
Meifang Huang ◽  
...  

Background. H. pylori infection induces reactive oxygen species- (ROS-) related DNA damage and activates the PI3K/Akt pathway in gastric epithelial cells. N-Acetylcysteine (NAC) is known as an inhibitor of ROS; the role of NAC in H. pylori-related diseases is unclear. Aim. The aim of this study was to evaluate the role of ROS and the protective role of NAC in the pathogenesis of H. pylori-related diseases. Method. An in vitro coculture system and an in vivo Balb/c mouse model of H. pylori-infected gastric epithelial cells were established. The effects of H. pylori infection on DNA damage and ROS were assessed by the comet assay and fluorescent dichlorofluorescein assay. The level of PI3K/Akt pathway-related proteins was evaluated by Western blotting. The protective role of N-acetylcysteine (NAC) was also evaluated with in vitro and in vivo H. pylori infection models. Results. The results revealed that, in vitro and in vivo, H. pylori infection increased the ROS level and induced DNA damage in gastric epithelial cells. NAC treatment effectively reduced the ROS level and inhibited DNA damage in GES-1 cells and the gastric mucosa of Balb/c mice. H. pylori infection induced ROS-mediated PI3K/Akt pathway activation, and NAC treatment inhibited this effect. However, the gastric mucosa pathological score of the NAC-treated group was not significantly different from that of the untreated group. Furthermore, chronic H. pylori infection decreased APE-1 expression in the gastric mucosa of Balb/c mice. Conclusions. An increased ROS level is a critical mechanism in H. pylori pathogenesis, and NAC may be beneficial for the treatment of H. pylori-related gastric diseases linked to oxidative DNA damage.


Sign in / Sign up

Export Citation Format

Share Document