Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum

2004 ◽  
Vol 286 (6) ◽  
pp. G906-G913 ◽  
Author(s):  
Donnie E. Shifflett ◽  
Samuel L. Jones ◽  
Adam J. Moeser ◽  
Anthony T. Blikslager

Mitogen-activated protein kinase (MAPK) pathways transduce signals from a diverse array of extracellular stimuli. The three primary MAPK-signaling pathways are the extracellular regulated kinases (ERK1/2), p38 MAPK, and c-Jun NH2-terminal kinase (JNK). Previous research in our laboratory has shown that COX-2-elaborated prostanoids participate in recovery of mucosal barrier function in ischemic-injured porcine ileum. Because COX-2 expression is regulated in part by MAPKs, we postulated that MAPK pathways would play an integral role in recovery of injured mucosa. Porcine mucosa was subjected to 45 min of ischemia, after which tissues were mounted in Ussing chambers, and transepithelial electrical resistance (TER) was monitored as an index of recovery of barrier function. Treatment of tissues with the p38 MAPK inhibitor SB-203580 (0.1 mM) or the ERK1/2 inhibitor PD-98059 (0.1 mM) abolished recovery. Western blot analysis revealed that SB-203580 inhibited upregulation of COX-2 that was observed in untreated ischemic-injured mucosa, whereas PD-98059 had no effect on COX-2 expression. Inhibition of TER recovery by SB-203580 or PD-98059 was overcome by administration of exogenous prostaglandin E2 (1 μM). The JNK inhibitor SP-600125 (0.1 mM) significantly increased TER and resulted in COX-2 upregulation. COX-2 expression appears to be positively and negatively regulated by the p38 MAPK and the JNK pathways, respectively. Alternatively, ERK1/2 appear to be involved in COX-2-independent reparative events that remain to be defined.

2019 ◽  
Vol 20 (10) ◽  
pp. 2490 ◽  
Author(s):  
Wen-Chung Huang ◽  
Chun-Hsun Huang ◽  
Sindy Hu ◽  
Hui-Ling Peng ◽  
Shu-Ju Wu

Atopic dermatitis (AD) is a recurrent allergic skin disease caused by genetic and environmental factors. Patients with AD may experience immune imbalance, increased levels of mast cells, immunoglobulin (Ig) E and pro-inflammatory factors (Cyclooxygenase, COX-2 and inducible NO synthase, iNOS). While spilanthol (SP) has anti-inflammatory and analgesic activities, its effect on AD remains to be explored. To develop a new means of SP, inflammation-related symptoms of AD were alleviated, and 2,4-dinitrochlorobenzene (DNCB) was used to induce AD-like skin lesions in BALB/c mice. Histopathological analysis was used to examine mast cells and eosinophils infiltration in AD-like skin lesions. The levels of IgE, IgG1 and IgG2a were measured by enzyme-linked immunosorbent assay (ELISA) kits. Western blot was used for analysis of the mitogen-activated protein kinase (MAPK) pathways and COX-2 and iNOS protein expression. Topical SP treatment reduced serum IgE and IgG2a levels and suppressed COX-2 and iNOS expression via blocked mitogen-activated protein kinase (MAPK) pathways in DNCB-induced AD-like lesions. Histopathological examination revealed that SP reduced epidermal thickness and collagen accumulation and inhibited mast cells and eosinophils infiltration into the AD-like lesions skin. These results indicate that SP may protect against AD skin lesions through inhibited MAPK signaling pathways and may diminish the infiltration of inflammatory cells to block allergic inflammation.


2011 ◽  
Vol 300 (1) ◽  
pp. E103-E110 ◽  
Author(s):  
Xiaoban Xin ◽  
Lijun Zhou ◽  
Caleb M. Reyes ◽  
Feng Liu ◽  
Lily Q. Dong

The adaptor protein APPL1 mediates the stimulatory effect of adiponectin on p38 mitogen-activated protein kinase (MAPK) signaling, yet the underlying mechanism remains unclear. Here we show that, in C2C12 cells, overexpression or suppression of APPL1 enhanced or suppressed, respectively, adiponectin-stimulated p38 MAPK upstream kinase cascade, consisting of transforming growth factor-β-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase 3 (MKK3). In vitro affinity binding and coimmunoprecipitation experiments revealed that TAK1 and MKK3 bind to different regions of APPL1, suggesting that APPL1 functions as a scaffolding protein to facilitate adiponectin-stimulated p38 MAPK activation. Interestingly, suppressing APPL1 had no effect on TNFα-stimulated p38 MAPK phosphorylation in C2C12 myotubes, indicating that the stimulatory effect of APPL1 on p38 MAPK activation is selective. Taken together, our study demonstrated that the TAK1-MKK3 cascade mediates adiponectin signaling and uncovers a scaffolding role of APPL1 in regulating the TAK1-MKK3-p38 MAPK pathway, specifically in response to adiponectin stimulation.


2003 ◽  
Vol 285 (5) ◽  
pp. L1087-L1098 ◽  
Author(s):  
Cherie A. Singer ◽  
Kimberly J. Baker ◽  
Alan McCaffrey ◽  
David P. AuCoin ◽  
Melissa A. Dechert ◽  
...  

We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-κB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and interferon (IFN)-γ. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 μM) or the proteosome inhibitor MG-132 (1 μM). SB-203580 did not affect cytokine-stimulated IκBα degradation, NF-κB nuclear binding activity, or NF-κB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-κB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-κB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-κB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.


2019 ◽  
Vol 12 ◽  
pp. 117863611986459 ◽  
Author(s):  
Jessica Gräb ◽  
Jan Rybniker

The p38 mitogen-activated protein kinase (MAPK) is involved in a multitude of essential cellular processes. The kinase is activated in response to environmental stresses, including bacterial infections and inflammation, to regulate the immune response of the host. However, recent studies have demonstrated that pathogens can manipulate p38 MAPK signaling for their own benefit to either prevent or induce host cell apoptosis. In addition, there is evidence demonstrating that p38 MAPK is a potent trigger of pathogen-induced necrosis driven by mitochondrial membrane disruption. Given the large number of p38 MAPK inhibitors that have been tested in clinical trials, these findings provide an opportunity to repurpose these drugs for improved control of infectious diseases.


2003 ◽  
Vol 284 (2) ◽  
pp. C339-C348 ◽  
Author(s):  
Stephen J. Keely ◽  
Kim E. Barrett

We have previously shown that Ca2+-dependent Cl−secretion across intestinal epithelial cells is limited by a signaling pathway involving transactivation of the epidermal growth factor receptor (EGFR) and activation of ERK mitogen-activated protein kinase (MAPK). Here, we have investigated a possible role for p38 MAPK in regulation of Ca2+-dependent Cl− secretion. Western blot analysis of T84 colonic epithelial cells revealed that the muscarinic agonist carbachol (CCh; 100 μM) stimulated phosphorylation and activation of p38 MAPK. The p38 inhibitor SB-203580 (10 μM) potentiated and prolonged short-circuit current ( I sc) responses to CCh across voltage-clamped T84 cells to 157.4 ± 6.9% of those in control cells ( n = 21; P < 0.001). CCh-induced p38 phosphorylation was attenuated by the EGFR inhibitor tyrphostin AG-1478 (0.1 nM–10 μM) and by the Src family kinase inhibitor PP2 (20 nM–2 μM). The effects of CCh on p38 phosphorylation were mimicked by thapsigargin (TG; 2 μM), which specifically elevates intracellular Ca2+, and were abolished by the Ca2+ chelator BAPTA-AM (20 μM), implying a role for intracellular Ca2+ in mediating p38 activation. SB-203580 (10 μM) potentiated I sc responses to TG to 172.4 ± 18.1% of those in control cells ( n= 18; P < 0.001). When cells were pretreated with SB-203580 and PD-98059 to simultaneously inhibit p38 and ERK MAPKs, respectively, I sc responses to TG and CCh were significantly greater than those observed with either inhibitor alone. We conclude that Ca2+-dependent agonists stimulate p38 MAPK in T84 cells by a mechanism involving intracellular Ca2+, Src family kinases, and the EGFR. CCh-stimulated p38 activation constitutes a similar, but distinct and complementary, antisecretory signaling pathway to that of ERK MAPK.


2007 ◽  
Vol 75 (9) ◽  
pp. 4472-4481 ◽  
Author(s):  
Junzo Hisatsune ◽  
Eiki Yamasaki ◽  
Masaaki Nakayama ◽  
Daisuke Shirasaka ◽  
Hisao Kurazono ◽  
...  

ABSTRACT Treatment of AZ-521 cells with Helicobacter pylori VacA increased cyclooxygenase 2 (COX-2) mRNA in a time- and dose-dependent manner. A p38 mitogen-activated protein kinase (MAPK) inhibitor, SB203580, blocked elevation of COX-2 mRNA levels, whereas PD98059, which blocks the Erk1/2 cascade, partially suppressed the increase. Consistent with involvement of p38 MAPK, VacA-induced accumulation of COX-2 mRNA was reduced in AZ-521 cells overexpressing a dominant-negative p38 MAPK (DN-p38). Phosphatidylinositol-specific phospholipase C, which inhibits VacA-induced p38 MAPK activation, blocked VacA-induced COX-2 expression. In parallel with COX-2 expression, VacA increased prostaglandin E2 (PGE2) production, which was inhibited by SB203580 and NS-398, a COX-2 inhibitor. VacA-induced PGE2 production was markedly attenuated in AZ-521 cells stably expressing DN-p38. VacA increased transcription of a COX-2 promoter reporter gene and activated a COX-2 promoter containing mutated NF-κB or NF-interleukin-6 sites but not a mutated cis-acting replication element (CRE) site, suggesting direct involvement of the activating transcription factor 2 (ATF-2)/CREB-binding region in VacA-induced COX-2 promoter activation. The reduction of ATF-2 expression in AZ-521 cells transformed with ATF-2-small interfering RNA duplexes resulted in suppression of COX-2 expression. Thus, VacA enhances PGE2 production by AZ-521 cells through induction of COX-2 expression via the p38 MAPK/ATF-2 cascade, leading to activation of the CRE site in the COX-2 promoter.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1942-1942
Author(s):  
Ugur Akar ◽  
Bulent Ozpolat ◽  
Nancy Colburn ◽  
Gabriel Lopez-Berestein

Abstract Programmed-cell-death-4 (PDCD4) is a novel tumor suppressor protein that suppresses tumor promoter-induced neoplastic transformation. PDCD4 specifically inhibits the helicase activity of eukaryotic translation initiation factor 4A (eIF4A) and translation initiation and cap-dependent mRNA translation in vitro and in vivo. Loss or underexpression of PDCD4 is associated with carcinogenesis and chemoresistance in solid tumors. The role and regulation of PDCD4 in the the hematopoietic system and myeloid leukemia cells are not known. We previously reported that ATRA induces translational suppression through multiple posttranscriptional mechanisms during terminal cell differentiation (Harris et al, Blood, 104 (5) 2004). Therefore, in this study, we investigated the expression and regulation of PDCD4 during myeloid cell differentiation. All-trans-retinoic acid (ATRA) induces terminal differentiation in acute myeloid leukemia (AML) and promyelocytic (APL) cells, a well established model for myeloid cell differentiation. We found that treatment of HL60 (M2 type AML) and NB4 APL (M3 type AML) cells with ATRA (1 mM) induced PDCD4 protein and mRNA expression during granulocytic differentiation detected by western blot and RT-PCR analysis, respectively. We also demonstrated that inhibition of PDCD4 by siRNA reduced granulocytic differentiation induced by ATRA, suggesting that PDCD4 plays a role in granuliocytic differentiation. To determine mechanisms regulating PDCD4 we investigated the role of pP38 MAPK (Mitogen activated protein kinase) in reugulation of PDCD4 expression. ATRA induced PDCD4 expression correlated with activation of p38 MAPK (Mitogen Activated Protein Kinase) pathway in NB4 cells. To test the hypothesis that p38 MAPK signaling pathway mediates retinoic acid induced PDCD4 expression we treated cells with a specific p38 MAPK inhibitor, SB203580, ATRA or combination with ATRA. We observed that p38 inhibitor inhibited ATRA-induced expression of PDCD4 in NB4 cells. Basal level of PDCD4 expression was also markedly downregulated in the presence of p38 inhibitor when compared to untreated control cells, suggesting that p38 pathway is involved in ATRA-dependent and independent PDCD4 expression. Currently we are investigating whether inhibition of p38 by small interfering RNA (siRNA) will prevent expression of ATRA induced PDCD4 in APL cells. We are also trying to identify whether ATF2 transcription factor, a downstream of p38, is involved in PDCD4 expression. p38-mediated induction of PDCD4 pathway reveals a novel mechanism of PDCD4 regulation and ATRA action, providing a new insight into understanding terminal differentiation of myeloid cells. Better understanding the role of PDCD4 and posttranscriptional control of gene expression may offer targets for the differentiation therapy and chemo preventive strategies.


2009 ◽  
Vol 83 (12) ◽  
pp. 6039-6047 ◽  
Author(s):  
Li Wei ◽  
Zhongwu Zhu ◽  
Jing Wang ◽  
Jue Liu

ABSTRACT Infection with a wide variety of viruses often perturbs host cell signaling pathways including the Jun NH2-terminal kinase/stress-activated kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase (p38/MAPK), which are important components of cellular signal transduction pathways. The present study demonstrated for the first time that porcine circovirus type 2 (PCV2), which is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome, can activate JNK1/2 and p38 MAPK pathways in PCV2-infected PK15 cells. However, PCV2 at an early stage of infection, as well as UV-irradiated PCV2, failed to activate these two MAPK families, which demonstrated that PCV2 replication was necessary for their activation. We further found that PCV2 activated the phosphorylation of JNK1/2 and p38 MAPK downstream targets c-Jun and ATF-2 with virus replication in the cultured cells. The roles of these kinases in PCV2 infection were further evaluated using specific inhibitors: the JNK inhibitor 1 for JNK1/2 and SB202190 for p38. Inhibition of JNK1/2 and p38 kinases by these specific inhibitors did result in significant reduction of PCV2 viral mRNA transcription and protein synthesis, viral progeny release, and blockage of PCV2-induced apoptotic caspase-3 activation in the infected cells. Taken together, these data suggest that JNK/SAPK and p38 MAPK pathways play important roles in the PCV2 replication and contribute to virus-mediated changes in host cells.


2014 ◽  
Vol 522-524 ◽  
pp. 332-336 ◽  
Author(s):  
Kai Xiu Qin ◽  
Yong Wang ◽  
Hua Gang Jian

Objective To investigate the expression and roles of p38 mitogen-activated protein kinase (p38 MAPK) in LPS-induced acute lung injury (ALI) in mice. Methods The ALI mice models were set up by intraperineal injection of lipopolysaccharide (LPS). The expressions of p38 MAPK in lung tissues were detected by immunohistochemistry and Western-blot. Results The positive expressions of p38 MAPK distribute mainly in infiltrative inflammatory cells, epithelial cells and endothelial cells. And the level of expression of phosphated p38 MAPK in ALI group were higher obviously than that in the control group, and it reached a peak after two hours. Conclusion p38 MAPK signaling pathway was triggered by ALI induced by endotoxin.


2020 ◽  
Vol 21 (3) ◽  
pp. 1102 ◽  
Author(s):  
Shannon Lee ◽  
Jens Rauch ◽  
Walter Kolch

Mitogen-activated protein kinase (MAPK) pathways represent ubiquitous signal transduction pathways that regulate all aspects of life and are frequently altered in disease. Here, we focus on the role of MAPK pathways in modulating drug sensitivity and resistance in cancer. We briefly discuss new findings in the extracellular signaling-regulated kinase (ERK) pathway, but mainly focus on the mechanisms how stress activated MAPK pathways, such as p38 MAPK and the Jun N-terminal kinases (JNK), impact the response of cancer cells to chemotherapies and targeted therapies. In this context, we also discuss the role of metabolic and epigenetic aberrations and new therapeutic opportunities arising from these changes.


Sign in / Sign up

Export Citation Format

Share Document