Increased susceptibility to exacerbated liver injury in hypercholesterolemic ApoE-deficient mice: potential involvement of oxysterols

2009 ◽  
Vol 296 (3) ◽  
pp. G553-G562 ◽  
Author(s):  
Natàlia Ferré ◽  
Marcos Martínez-Clemente ◽  
Marta López-Parra ◽  
Ana González-Périz ◽  
Raquel Horrillo ◽  
...  

The contribution of metabolic factors to the severity of liver disease is not completely understood. In this study, apolipoprotein E-deficient (ApoE−/−) mice were evaluated to define potential effects of hypercholesterolemia on the severity of carbon tetrachloride (CCl4)-induced liver injury. Under baseline conditions, hypercholesterolemic ApoE−/− mice showed increased hepatic oxidative stress (SOD activity/4-hydroxy-2-nonenal immunostaining) and higher hepatic TGF-β1, MCP-1, and TIMP-1 expression than wild-type control mice. After CCl4 challenge, ApoE−/− mice exhibited exacerbated steatosis (Oil Red O staining), necroinflammation (hematoxylin-eosin staining), macrophage infiltration (F4/80 immunohistochemistry), and fibrosis (Sirius red staining and α-smooth muscle actin immunohistochemistry) and more severe liver injury [alanine aminotransferase (ALT) and aspartate aminotransferase] than wild-type controls. Direct correlations were identified between serum cholesterol and hepatic steatosis, fibrosis, and ALT levels. These changes did not reflect the usual progression of the disease in ApoE−/− mice, since exacerbated liver injury was not present in untreated age-paired ApoE−/− mice. Moreover, hepatic cytochrome P-450 expression was unchanged in ApoE−/− mice. To explore potential mechanisms, cell types relevant to liver pathophysiology were exposed to selected cholesterol-oxidized products. Incubation of hepatocytes with a mixture of oxysterols representative of those detected by GC-MS in livers from ApoE−/− mice resulted in a concentration-dependent increase in total lipoperoxides and SOD activity. In hepatic stellate cells, oxysterols increased IL-8 secretion through a NF-κB-independent mechanism and upregulated TIMP-1 expression. In macrophages, oxysterols increased TGF-β1 secretion and MCP-1 expression in a concentration-dependent manner. Oxysterols did not compromise cell viability. Taken together, these findings demonstrate that hypercholesterolemic mice are sensitized to liver injury and that cholesterol-derived products (i.e., oxysterols) are able to induce proinflammatory and profibrogenic mechanisms in liver cells.

Blood ◽  
2021 ◽  
Author(s):  
Lauren G. Poole ◽  
Anna K Kopec ◽  
Dafna Groeneveld ◽  
Asmita Pant ◽  
Kevin Baker ◽  
...  

Intravascular fibrin clot formation follows a well-ordered series of reactions catalyzed by thrombin cleavage of fibrinogen leading to fibrin polymerization and cross-linking by factor XIIIa (FXIIIa). Extravascular fibrin(ogen) deposits are observed in injured tissues; however, the mechanisms regulating fibrin(ogen) polymerization and cross-linking in this setting are unclear. The objective of this study was to determine the mechanisms of fibrin polymerization and cross-linking in acute liver injury induced by acetaminophen (APAP) overdose. Hepatic fibrin(ogen) deposition and cross-linking were measured following APAP overdose in wild-type mice, mice lacking the catalytic subunit of FXIII (FXIII-/-), and in FibAEK mice, which express mutant fibrinogen insensitive to thrombin-mediated fibrin polymer formation. Hepatic fibrin(ogen) deposition was similar in APAP-challenged wild-type and FXIII-/- mice yet cross-linking of hepatic fibrin(ogen) was dramatically reduced (>90%) by FXIII deficiency. Surprisingly, hepatic fibrin(ogen) deposition and cross-linking were only modestly reduced in APAP-challenged FibAEK mice, suggesting that in the APAP-injured liver fibrin polymerization is not strictly required for the extravascular deposition of cross-linked fibrin(ogen). We hypothesized that the oxidative environment in the injured liver, containing high levels of reactive mediators (e.g., peroxynitrite), modifies fibrin(ogen) such that fibrin polymerization is impaired without impacting FXIII-mediated cross-linking. Notably, fibrin(ogen) modified with 3-nitrotyrosine adducts was identified in the APAP-injured liver. In biochemical assays, peroxynitrite inhibited thrombin-mediated fibrin polymerization in a concentration-dependent manner without affecting fibrin(ogen) cross-linking over time. These studies depict a unique pathology wherein thrombin-catalyzed fibrin polymerization is circumvented to allow tissue deposition and FXIII-dependent fibrin(ogen) cross-linking.


2003 ◽  
Vol 69 (5) ◽  
pp. 2521-2532 ◽  
Author(s):  
C. Lange ◽  
D. Rittmann ◽  
V. F. Wendisch ◽  
M. Bott ◽  
H. Sahm

ABSTRACT Addition of l-valine (50 to 200 mM) to glucose minimal medium had no effect on the growth of wild-type Corynebacterium glutamicum ATCC 13032 but inhibited the growth of the derived valine production strain VAL1 [13032 ΔilvA ΔpanBC(pJC1ilvBNCD)] in a concentration-dependent manner. In order to explore this strain-specific valine effect, genomewide expression profiling was performed using DNA microarrays, which showed that valine caused an increased ilvBN mRNA level in VAL1 but not in the wild type. This unexpected result was confirmed by an increased cellular level of the ilvB protein product, i.e., the large subunit of acetohydroxyacid synthase (AHAS), and by an increased AHAS activity of valine-treated VAL1 cells. The conclusion that valine caused the limitation of another branched-chain amino acid was confirmed by showing that high concentrations of l-isoleucine could relieve the valine effect on VAL1 whereas l-leucine had the same effect as valine. The valine-caused isoleucine limitation was supported by the finding that the inhibitory valine effect was linked to the ilvA deletion that results in isoleucine auxotrophy. Taken together, these results implied that the valine effect is caused by competition for uptake of isoleucine by the carrier BrnQ, which transports all branched-chained amino acids. Indeed, valine inhibition could also be relieved by supplementing VAL1 with the dipeptide isoleucyl-isoleucine, which is taken up by a dipeptide transport system rather than by BrnQ. Interestingly, addition of external valine stimulated valine production by VAL1. This effect is most probably due to a reduced carbon usage for biomass production and to the increased expression of ilvBN, indicating that AHAS activity may still be a limiting factor for valine production in the VAL1 strain.


1999 ◽  
Vol 277 (5) ◽  
pp. C870-C877 ◽  
Author(s):  
Esther Titos ◽  
Nan Chiang ◽  
Charles N. Serhan ◽  
Mario Romano ◽  
Joan Gaya ◽  
...  

Novel aspirin (ASA)-triggered 15-epi-lipoxins (ATL) comprise new potent bioactive eicosanoids that may contribute to the therapeutic effect of this drug. ATL biosynthesis is initiated by ASA acetylation of cyclooxygenase (COX)-2 and was originally identified during the interaction of leukocytes with either endothelial or epithelial cells. Here, we examined ATL biosynthesis in rat hepatocytes either alone or in coincubation with nonparenchymal liver cells (NPC) and in liver homogenates from ASA-treated rats. Rat hepatocytes and CC-1 cells, a rat hepatocyte cell line, displayed COX-1 but not COX-2 mRNA expression and predominantly produced thromboxane A2(TXA2) and 15-hydroxyeicosatetraenoic acid (15-HETE). In these cells, ASA shifted the arachidonic acid metabolism from TXA2 to 15-HETE in a concentration-dependent manner. In contrast, neither indomethacin, ibuprofen, valeryl salicylate, nor nimesulide was able to trigger 15-HETE biosynthesis. SKF-525A, a cytochrome P-450 inhibitor, significantly reduced the effect of ASA on 15-HETE biosynthesis. Furthermore, phenobarbital, a potent inducer of cytochrome P-450 activity, further increased ASA-induced 15-HETE production. ASA treatment of hepatocyte-NPC coincubations resulted in the generation of significant amounts of ATL. In addition, in vivo experiments demonstrated augmented hepatic levels of 15-epi-lipoxin A4 in ASA-treated rats. Taken together and considering that ASA is hydrolyzed on its first pass through the portal circulation, these data indicate that, during ASA's consumption, liver tissue generates biologically relevant amounts of ATL by COX-2-independent mechanisms.


2020 ◽  
Vol 21 (19) ◽  
pp. 7294
Author(s):  
Celia Alonso ◽  
Sergio Utrilla-Trigo ◽  
Eva Calvo-Pinilla ◽  
Luis Jiménez-Cabello ◽  
Javier Ortego ◽  
...  

Bluetongue virus (BTV) and African horse sickness virus (AHSV) are vector-borne viruses belonging to the Orbivirus genus, which are transmitted between hosts primarily by biting midges of the genus Culicoides. With recent BTV and AHSV outbreaks causing epidemics and important economy losses, there is a pressing need for efficacious drugs to treat and control the spread of these infections. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antiviral activity. Here, we evaluated ATA as a potential antiviral compound against Orbivirus infections in both mammalian and insect cells. Notably, ATA was able to prevent the replication of BTV and AHSV in both cell types in a time- and concentration-dependent manner. In addition, we evaluated the effect of ATA in vivo using a mouse model of infection. ATA did not protect mice against a lethal challenge with BTV or AHSV, most probably due to the in vivo effect of ATA on immune system regulation. Overall, these results demonstrate that ATA has inhibitory activity against Orbivirus replication in vitro, but further in vivo analysis will be required before considering it as a potential therapy for future clinical evaluation.


2003 ◽  
Vol 228 (7) ◽  
pp. 786-794 ◽  
Author(s):  
Wieslaw Kozak ◽  
David M. Aronoff ◽  
Olivier Boutaud ◽  
Anna Kozak

Cytochrome P-450 monooxygenase (epoxygenase)-derived arachidonic acid (AA) metabolites, including 11,12-epoxyeicosatrienoic acid (11,12-EET), possess anti-inflammatory and antipyretic properties. Prostaglandin E2 (PGE2), a cyclooxygenase (COX)-derived metabolite of AA, is a well-defined mediator of fever and inflammation. We have tested the hypothesis that 11,12-EET attenuates synthesis of PGE2 in monocytes, which are the cells that are indispensable for induction of fever and initiation of inflammation. Monocytes isolated from freshly collected rat blood were stimulated with lipopolysaccharide (LPS; 100 ng/2 × 105 cells) to induce COX-2 and stimulate generation of PGE2. SKF-525A, an inhibitor of epoxygenases, significantly augmented the lipopolysaccharide-provoked synthesis of PGE2 in cell culture in a concentration-dependent manner. It did not affect, however, elevation of the expression of COX-2 protein in monocytes stimulated with LPS. 11,12-EET also did not affect the induction of COX-2 in monocytes incubated with lipopolysaccharide. However, 11,12-EET suppressed, in a concentration-dependent fashion, the generation of PGE2 in incubates. Preincubation of a murine COX-2 preparation for 0–5 min with three concentrations of 11,12-EET (1, 5, and 10 μM) inhibited the oxygenation of [14C]-labeled AA by the enzyme. The inhibitory effect of 11,12-EET on COX-2 was time-and-concentration-dependent, suggesting a mechanism-based inhibition. Based on these data, we conclude that 11,12-EET suppresses generation of PGE2 in monocytes via modulating the activity of COX-2. These data support the hypothesis that epoxygenasederived AA metabolites constitute a negative feedback on the enhanced synthesis of prostaglandins upon inflammation.


2014 ◽  
Vol 306 (8) ◽  
pp. R586-R595 ◽  
Author(s):  
Hamid Delavar ◽  
Leonardo Nogueira ◽  
Peter D. Wagner ◽  
Michael C. Hogan ◽  
Daniel Metzger ◽  
...  

Vascular endothelial growth factor (VEGF) is exercise responsive, pro-angiogenic, and expressed in several muscle cell types. We hypothesized that in adult mice, VEGF generated within skeletal myofibers (and not other cells within muscle) is necessary for the angiogenic response to exercise training. This was tested in adult conditional, skeletal myofiber-specific VEGF gene-deleted mice (skmVEGF−/−), with VEGF levels reduced by >80%. After 8 wk of daily treadmill training, speed and endurance were unaltered in skmVEGF−/− mice, but increased by 18% and 99% ( P < 0.01), respectively, in controls trained at identical absolute speed, incline, and duration. In vitro, isolated soleus and extensor digitorum longus contractile function was not impaired in skmVEGF−/− mice. However, training-induced angiogenesis was inhibited in plantaris (wild type, 38%, skmVEGF−/− 18%, P < 0.01), and gastrocnemius (wild type, 43%, P < 0.01; skmVEGF−/−, 7%, not significant). Capillarity was maintained (different from VEGF gene deletion targeted to multiple cell types) in untrained skmVEGF−/− mice. Arteriogenesis (smooth muscle actin+, artery number, and diameter) and remodeling [vimentin+, 5′-bromodeoxycytidine (BrdU)+, and F4/80+ cells] occurred in skmVEGF−/− mice, even in the absence of training. skmVEGF−/− mice also displayed a limited oxidative enzyme [citrate synthase and β-hydroxyacyl CoA dehydrogenase (β-HAD)] training response; β-HAD activity levels were elevated in the untrained state. These data suggest that myofiber expressed VEGF is necessary for training responses in capillarity and oxidative capacity and for improved running speed and endurance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Beibei Zhang ◽  
Xiaoying Wu ◽  
Jing Li ◽  
An Ning ◽  
Bo Zhang ◽  
...  

Abstract Background Hepatic schistosomiasis, a chronic liver injury induced by long-term Schistosoma japonicum (S. japonicum) infection, is characterized by egg granulomas and fibrotic pathology. Hepatic progenitor cells (HPCs), which are nearly absent or quiescent in normal liver, play vital roles in chronic and severe liver injury. But their role in the progression of liver injury during infection remains unknown. Methods In this study, the hepatic egg granulomas, fibrosis and proliferation of HPCs were analyzed in the mice model of S. japonicum infection at different infectious stages. For validating the role of HPCs in hepatic injury, tumor necrosis factor-like-weak inducer of apoptosis (TWEAK) and TWEAK blocking antibody were used to manipulate the proliferation of HPCs in wild-type and IL-33−/− mice infected with S. japonicum. Results We found that the proliferation of HPCs was accompanied by inflammatory granulomas and fibrosis formation. HPCs expansion promoted liver regeneration and inhibited inflammatory egg granulomas, as well as the deposition of fibrotic collagen. Interestingly, the expression of IL-33 was negatively associated with HPCs’ expansion. There were no obvious differences of liver injury caused by infection between wild-type and IL-33−/− mice with HPCs’ expansion. However, liver injury was more attenuated in IL-33−/− mice than wild-type mice when the proliferation of HPCs was inhibited by anti-TWEAK. Conclusions Our data uncovered a protective role of HPCs in hepatic schistosomiasis in an IL-33-dependent manner, which might provide a promising progenitor cell therapy for hepatic schistosomiasis.


1991 ◽  
Vol 6 (1) ◽  
pp. 95-99 ◽  
Author(s):  
M. A. Sortino ◽  
T. M. Delahunty ◽  
T. Yasumoto ◽  
M. J. Cronin

ABSTRACT Maitotoxin is a potent marine poison that mobilizes calcium in most vertebrate cell types and accelerates secretion from anterior pituitary cells. It is not known whether voltage-sensitive calcium channels or other mechanisms initiate the effects of maitotoxin on anterior pituitary cells. Changes in intracellular Ca2+ levels may also be achieved by releasing internal calcium stores via inositol trisphosphate (InsP3). Indeed, maitotoxin rapidly increased inositol phosphate accumulation in a concentration-dependent manner. Calcium channel antagonists such as nifedipine and verapamil did not block this response nor did calcium-mobilizing agents (BAYk8644, A23187) mimic this effect. These data suggest that the mechanism by which maitotoxin acts at the pituitary may include the activation of an enzyme that produces the calcium-mobilizing signal InsP3.


1998 ◽  
Vol 275 (2) ◽  
pp. C389-C400 ◽  
Author(s):  
Rajan L. Sah ◽  
Robert G. Tsushima ◽  
Peter H. Backx

We examined the ability of local anesthetics to correct altered inactivation properties of rat skeletal muscle Na+channels containing the equine hyperkalemic periodic paralysis (eqHPP) mutation when expressed in Xenopusoocytes. Increased time constants of current decay in eqHPP channels compared with wild-type channels were restored by 1 mM benzocaine but were not altered by lidocaine or mexiletine. Inactivation curves, which were determined by measuring the dependence of the relative peak current amplitude after depolarization to −10 mV on conditioning prepulse voltages, could be shifted in eqHPP channels back toward that observed for wild-type (WT) channels using selected concentrations of benzocaine, lidocaine, and mexiletine. Recovery from inactivation at −80 mV (50-ms conditioning pulse) in eqHPP channels followed a monoexponential time course and was markedly accelerated compared with wild-type channels (τWT= 10.8 ± 0.9 ms; τeqHPP= 2.9 ± 0.4 ms). Benzocaine slowed the time course of recovery (τeqHPP,ben = 9.6 ± 0.4 ms at 1 mM) in a concentration-dependent manner. In contrast, the recovery from inactivation with lidocaine and mexiletine had a fast component (τfast,lid = 3.2 ± 0.2 ms; τfast,mex = 3.1 ± 0.2 ms), which was identical to the recovery in eqHPP channels without drug, and a slow component (τslow,lid = 1,688 ± 180 ms; τslow,mex = 2,323 ± 328 ms). The time constant of the slow component of the recovery from inactivation was independent of the drug concentration, whereas the fraction of current recovering slowly depended on drug concentrations and conditioning pulse durations. Our results show that local anesthetics are generally incapable of fully restoring normal WT behavior in inactivation-deficient eqHPP channels.


2005 ◽  
Vol 49 (11) ◽  
pp. 4671-4680 ◽  
Author(s):  
Graciela Andrei ◽  
Joost van den Oord ◽  
Pierre Fiten ◽  
Ghislain Opdenakker ◽  
Chris De Wolf-Peeters ◽  
...  

ABSTRACT The course of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) and varicella-zoster virus (VZV) infections in squamous epithelial cells cultured in a three-dimensional organotypic raft culture was tested. In these raft cultures, normal human keratinocytes isolated from neonatal foreskins grown at the air-liquid interface stratified and differentiated, reproducing a fully differentiated epithelium. Typical cytopathic changes identical to those found in the squamous epithelium in vivo, including ballooning and reticular degeneration with the formation of multinucleate cells, were observed throughout the raft following infection with HSV and VZV at different times after lifting the cultures to the air-liquid interface. For VZV, the aspects of the lesions depended on the stage of differentiation of the organotypic cultures. The activity of reference antiviral agents, acyclovir (ACV), penciclovir (PCV), brivudin (BVDU), foscarnet (PFA), and cidofovir (CDV), was evaluated against wild-type and thymidine kinase (TK) mutants of HSV and VZV in the raft cultures. ACV, PCV, and BVDU protected the epithelium against cytopathic effect induced by wild-type viruses in a concentration-dependent manner, while treatment with CDV and PFA proved protective against the cytodestructive effects induced by both TK+ and TK− strains. The quantification of the antiviral effects in the rafts were accomplished by measuring viral titers by plaque assay for HSV and by measuring viral DNA load by real-time PCR for VZV. A correlation between the degree of protection as determined by histological examination and viral quantification could be demonstrated The three-dimensional epithelial raft culture represents a novel model for the study of antiviral agents active against HSV and VZV. Since no animal model is available for the evaluation of antiviral agents against VZV, the organotypic cultures may be considered a model to evaluate the efficacy of new anti-VZV antivirals before clinical trials.


Sign in / Sign up

Export Citation Format

Share Document