scholarly journals IL-13 promotes in vivo neonatal cardiomyocyte cell cycle activity and heart regeneration

2019 ◽  
Vol 316 (1) ◽  
pp. H24-H34 ◽  
Author(s):  
Dylan J. Wodsedalek ◽  
Samantha J. Paddock ◽  
Tina C. Wan ◽  
John A. Auchampach ◽  
Aria Kenarsary ◽  
...  

There is great interest in identifying signaling mechanisms by which cardiomyocytes (CMs) can enter the cell cycle and promote endogenous cardiac repair. We have previously demonstrated that IL-13 stimulated cell cycle activity of neonatal CMs in vitro. However, the signaling events that occur downstream of IL-13 in CMs and the role of IL-13 in CM proliferation and regeneration in vivo have not been explored. Here, we tested the role of IL-13 in promoting neonatal CM cell cycle activity and heart regeneration in vivo and investigated the signaling pathway(s) downstream of IL-13 specifically in CMs. Compared with control, CMs from neonatal IL-13 knockout (IL-13−/−) mice showed decreased proliferative markers and coincident upregulation of the hypertrophic marker brain natriuretic peptide ( Nppb) and increased CM nuclear size. After apical resection in anesthetized newborn mice, heart regeneration was significantly impaired in IL-13−/− mice compared with wild-type mice. Administration of recombinant IL-13 reversed these phenotypes by increasing CM proliferation markers and decreasing Nppb expression. RNA sequencing on primary neonatal CMs treated with IL-13 revealed activation of gene networks regulated by ERK1/2 and Akt. Western blot confirmed strong phosphorylation of ERK1/2 and Akt in both neonatal and adult cultured CMs in response to IL-13. Our data demonstrated a role for endogenous IL-13 in neonatal CM cell cycle and heart regeneration. ERK1/2 and Akt signaling are important pathways known to promote CM proliferation and protect against apoptosis, respectively; thus, targeting IL-13 transmembrane receptor signaling or administering recombinant IL-13 may be therapeutic approaches for activating proregenerative and survival pathways in the heart. NEW & NOTEWORTHY Here, we demonstrate, for the first time, that IL-13 is involved in neonatal cardiomyocyte cell cycle activity and heart regeneration in vivo. Prior work has shown that IL-13 promotes cardiomyocyte cell cycle activity in vitro; however, the signaling pathways were unknown. We used RNA sequencing to identify the signaling pathways activated downstream of IL-13 in cardiomyocytes and found that ERK1/2 and Akt signaling was activated in response to IL-13.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Hu ◽  
Xiaobin Zhu ◽  
Taogen Zhang ◽  
Zhouming Deng ◽  
Yuanlong Xie ◽  
...  

Introduction. Osteosarcoma is a malignant tumor associated with high mortality rates due to the toxic side effects of current therapeutic methods. Tanshinone IIA can inhibit cell proliferation and promote apoptosis in vitro, but the exact mechanism is still unknown. The aims of this study are to explore the antiosteosarcoma effect of tanshinone IIA via Src kinase and demonstrate the mechanism of this effect. Materials and Methods. Osteosarcoma MG-63 and U2-OS cell lines were stable transfections with Src-shRNA. Then, the antiosteosarcoma effect of tanshinone IIA was tested in vitro. The protein expression levels of Src, p-Src, p-ERK1/2, and p-AKt were detected by Western blot and RT-PCR. CCK-8 assay and BrdU immunofluorescence assay were used to detect cell proliferation. Transwell assay, cell scratch assay, and flow cytometry were used to detect cell invasion, migration, and cell cycle. Tumor-bearing nude mice with osteosarcoma were constructed. The effect of tanshinone IIA was detected by tumor HE staining, tumor inhibition rate, incidence of lung metastasis, and X-ray. Results. The oncogene role of Src kinase in osteosarcoma is reflected in promoting cell proliferation, invasion, and migration and in inhibiting apoptosis. However, Src has different effects on cell proliferation, apoptosis, and cell cycle regulation among cell lines. At a cellular level, the antiosteosarcoma effect of tanshinone IIA is mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. At the animal level, tanshinone IIA played a role in resisting osteosarcoma formation by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways. Conclusion. Tanshinone IIA plays an antiosteosarcoma role in vitro and in vivo and inhibits the progression of osteosarcoma mediated by Src downstream of the MAPK/ERK and PI3K/AKt signaling pathways.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Samantha J Paddock ◽  
Victor Alencar ◽  
Dylan J Wodsedalek ◽  
Caitlin Omeara

Introduction: During the first week of life, neonatal mice are able to regenerate their hearts after injury with minimal scarring. Work from our lab demonstrates that IL13 signaling is required for neonatal heart regeneration, however multiple IL13 receptors exist. Here, we aim to identify the specific receptor ligand interaction that promotes regenerative healing in the heart. In vitro data suggests the IL4Ra/IL3Ra1 receptor heterodimer may mediate cardiomyocyte (CM) proliferation and heart regeneration. Thus, we aim to test the functional role of this receptor in cardiac regeneration in vivo . We hypothesize that IL13 signals through IL4Ra/IL13Ra1 directly on CMs to promote CM cell cycle activity and cardiac regeneration. Methods: To delineate IL13 signaling mechanisms in murine hearts, we utilized two knockouts of IL4Ra—global IL4Ra knockout (KO) and CM-specific IL4Ra knockout (IL4Ra fl/fl Myh6 CRE ) mice. To assess regeneration, mice received cardiac apical resection surgery at postnatal day 1 (P1). Regeneration was assessed by echocardiography and histological analysis of residual scars and CM proliferation indices. We next tested if IL13 administration could extend the regenerative window. We performed myocardial infarction (MI) on P7 mice and administered IL13 for two weeks. We assessed scar size through trichrome staining and CM cell cycle activity through immunostaining. Results: We observed impaired cardiac regeneration, determined by scar formation and decreased cardiac function in IL4Ra KO mice compared to littermate controls. Similar to global KOs, we observed decreased function in IL4Ra fl/fl Myh6 CRE mice. IL13 administration to wildtype mice after P7 MI decreased MI severity and increased CM cell cycle activity, suggesting improved reparative capacity. Interestingly, IL13 administration in IL4Ra fl/fl Myh6 CRE mice did not improve cardiac recovery phenotypes indicating that IL13 functions through IL4Ra directly on CMs to promote cardiac healing. Conclusion: These results demonstrate that the IL4Ra receptor subunit is required for cardiac regeneration, and activation of this receptor can extend the regenerative window. These findings lay the groundwork for potential therapeutic targets for promoting cardiac healing.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Caitlin O’Meara ◽  
Joseph Wamstad ◽  
Laurie Boyer ◽  
Richard T Lee

Some higher organisms, such as zebrafish and neonatal mice, are capable of complete and sufficient regeneration of the myocardium following injury, which is thought to occur primarily by proliferation of pre-existing cardiomyocytes. Although adult humans and adult mice lack this cardiac regeneration potential, there is great interest in understanding how regeneration can occur in the heart so that we can activate this process in humans suffering from heart failure. The aim of our study was to identify mechanisms by which mature, post-mitotic adult cardiomyocytes can re-enter the cell cycle to ultimately facilitate heart regeneration following injury. We derived a core transcriptional signature of injury-induced cardiomyocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiomyocyte differentiation and in an in vitro cardiomyocyte explant model, as well as a neonatal heart resection model. We identified a panel of transcription factors, growth factors, and cytokines, whose expression significantly correlated with the differentiated state of the cell in all datasets examined, suggesting that these factors play a role in regulating cardiomyocyte cell state. Furthermore, potential upstream regulators of core differentially expressed networks were identified using Ingenuity Pathway Analysis and we found that one predicted regulator, interleukin-13 (IL13), significantly induced cardiomyocyte cell cycle activity and STAT6/STAT3 signaling in vitro. siRNA knockdown experiments demonstrated that STAT3/periostin and STAT6 signaling are critical for cardiomyocyte cell cycle activity in response to IL13. These data reveal novel insights into the transcriptional regulation of mammalian heart regeneration and provide the founding circuitry for identifying potential regulators for stimulating cardiomyocyte cell cycle activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Chunqin Meng ◽  
Yuhao Teng ◽  
Xiaodong Jiang

This study aimed to investigate the in vitro and in vivo effects of Raddeanin A on apoptosis and the cell cycle in the human colorectal cell line, HCT116, and to explore the possible underlying mechanisms of action. We found the growth inhibition rate gradually increased as the drug concentration increased via the 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, which indicated that Raddeanin A significantly inhibited the growth of HCT116 cells. Flow cytometry (FCM) showed that Raddeanin A concentration-dependently induced apoptosis in HCT116 cells. In addition, the percentage of cells in the G0/G1phase was noticeably increased, which indicated that Raddeanin A blocked cell cycle progression in HCT116 cells and caused arrest in the G0/G1phase. Moreover, the expression of proteins involved in the PI3K/AKT signaling pathway (e.g., p-PI3K and p-AKT) was decreased. The results showed that in vivo revealed that Raddeanin A significantly inhibited tumor growth in an HCT116-xenografted mouse model; apoptotic cells were also detected in the tumor tissue. The expression of the tissue proteins cyclinD1, cyclinE, p-PI3K, and p-AKT was decreased. The above results show that the Raddeanin A exerted a strong antitumor effect in the human colorectal cell line HCT116 both in vitro and in vivo. This effect may be caused by the induction of apoptosis and cycle arrest achieved through PI3K/AKT signaling pathway regulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Quanxiang Liu ◽  
Yang Song ◽  
Xianliang Duan ◽  
Yuan Chang ◽  
Jianping Guo

Background. MicroRNAs (miRs) have been implicated in the development and progression of osteosarcoma. Here, we aimed to illustrate the important role of miR-92a on the regulation of OS development which may help to establish a novel strategy for OS diagnosis and treatment. Materials and Methods. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle and apoptosis were assessed by flow cytometry with PI and PI/Annexin-V stain, respectively. The expression of proteins was examined by western blot. qPCR was used to detect the expression of RNA. Cell migration was assayed with transwell assay. Results. MiR-92a inhibited the proliferation and the migration of OS in vitro and reduced the volume of the tumour in vivo. Further, miR-92a enhanced cisplatin sensitivity of OS. MiR-92a directly targeted Notch1. Conclusion. Together, our results indicate that miR-92a inhibited cell growth, migration, and enhanced cisplatin sensitivity of OS cell by targeting Notch1.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3184-3184 ◽  
Author(s):  
Asumi Yokota ◽  
Shinya Kimura ◽  
Ruriko Tanaka ◽  
Rina Nagao ◽  
Kazuki Sakai ◽  
...  

Abstract We have previously reported that zoledoronic acid (ZOL) augmented the in vivo effect of imatinib in a murine chronic myeloid leukemia (CML) model (Blood 2003). ZOL alone induces apoptosis in leukemic cells in vitro by inhibiting prenylation of the Ras-related proteins. In addition to this direct anti-leukemic effect, we hypothesized that ZOL also has some influence in leukemic cells in vivo indirectly by destroying osteoclasts (OCs), which is the primary therapeutic activity of ZOL in osteoporosis patients. Supporting this notion is that by mediating bone resorption, OCs release a variety of cytokines such as IGF- 1, TGF-β, etc. that have accumulated in the bone matrix. It has been reported that OCs play an important role in bone metastasis of solid tumor, especially in cancer stem cells. However, little is known about the role of OCs in leukemia. Therefore, we investigated it in vitro and in vivo. For this purpose, we established an in vitro osteoblasts (OBs) and OCs co-culture system. The stable co-culture system that we developed includes collagen gel and murine primary OBs and OCs. In addition, murine femoral bone sections were sometimes added to this culture system so that the OCs could release the cytokines from the bone matrix. Thus, the collagen gel and OBs were placed in 12-well plates with and without bone sections and/or OCs. The transwell chambers over the wells then received 1×104 Ba/F3 cells that had been transfected with wild type bcr-abl (Ba/F3/bcr-abl cells). OBs markedly enhanced the growth of Ba/F3/bcr-abl cells in this indirect contact coculture system whereas the presence of both OBs and OCs slightly suppressed cell growth. Intriguingly, when bone sections were added (OBs+OCs+bone), Ba/F3/bcr-abl cell proliferation was significantly suppressed compared to the effect of OBs alone or OBs+OCs (Figure). Cell cycle analysis revealed that the G0/G1 population was increased in Ba/F3/bcr-abl cells co-cultured with OBs+OCs+bones. We also observed that the p27 protein levels of Ba/F3/bcr-abl cells increased upon co-culture with OCs or OCs+bones, similar to their response to treatment with purified TGF-β. We performed ELISAs to determine the concentrations of cytokines in the supernatants of co-cultured OBs and OCs. There were higher levels of TGF-β1 in the OBs+OCs+bones supernatant than in the OBs+OCs supernatant. Furthermore, OBs produced high levels of IGF-1. These findings suggest that OBs and OCs affect the proliferation and the cell cycle arrest of leukemic cells by releasing soluble factors, respectively. To more comprehensively elucidate the roles OCs play in leukemia cells in vivo, we used reveromycin A (RM-A) which inhibits bone resorption by specifically inducing apoptosis in OCs (Woo et al, PNAS 2006). RM-A did not have any in vitro effects on the proliferation of Ba/F3/bcr-abl cells. Thus, we could know the unalloyed role of OCs in leukemia with RM-A compared with ZOL which inhibited directly both OCs and leukemic cells. Our preliminary data show that RM-A suppresses the engraftment of inoculated Ba/F3/bcr-abl cells to nude mice. We also present data from ongoing studies showing the effect of RM-A on leukemic cells in murine models. These findings suggested that OCs may be an important constituent of leukemia stem cell niche and destruction of OCs by either ZOL or RM-A is a novel strategy for leukemia treatment. Figure Figure


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3011-3011 ◽  
Author(s):  
Barbara Muz ◽  
Feda Azab ◽  
Pilar De La Puente ◽  
Ravi Vij ◽  
Abdel Kareem Azab

Abstract Introduction Waldenström Macroglobulinemia (WM) is a rare, low-grade B-cell lymphoma characterized by lymphoplasmacytic cells spread widely in the bone marrow (BM) and overproduction of monoclonal immunoglobulins M (IgM). Previous studies showed that tumor hypoxia develops in the BM of other hematologic malignancies and promotes dissemination. In this study, we tested the effect of hypoxia on cell proliferation, cell cycle and apoptosis; on egress and homing of WM cells from and into the BM; and on recovery and tumor colonization in the new BM niche. Methods We characterized the effect of tumor progression on generation of hypoxic conditions in the BM in vivo, by injecting BCWM1-mCherry cells to SCID mice, letting them grow for two weeks, analyzing the hypoxic state of the WM cells in the BM using pimonidazole, and testing the number of circulating cells. Moreover, we tested the effect of hypoxia on the homing of WM cells to the BM by injecting normoxic and hypoxic cells to mice and monitoring the number of the circulating WM cells in the blood at different time points by flow cytometry. Cancer cell colonization was assessed 1 and 3 days post IV injection of normoxic and hypoxic cells to mice; mononuclear cells were isolated from the BM, fixed, permeabilized and stained with antibodies for p-Rb and cyclin-E. The percentile of WM cells in the BM and the expression of cell cycle proteins were analyzed by flow cytometry. BCWM1 cells were exposed to normoxia (21% O2) or hypoxia (1% O2) in vitro for 24hrs, and n some cases reoxygenated for 24hrs. The expression of E-cadherin, VLA-4 and CXCR4 was analyzed by western blot or flow cytometry. We tested the effect of hypoxia on adhesion of WM cells to BM stroma and fibronectin. We further tested the effect of hypoxia on chemotactic properties of WM cells towards SDF-1 using a transwell migration chamber. In addition, we tested the effect of hypoxia on WM cell survival (by MTT assay), apoptosis and cell cycle (by using AnnexinV-PI and PI, respectively), and signaling pathways associated with survival, apoptosis and cell cycle (by western blotting). Results Tumor progression was shown to increase hypoxic conditions in the BM in vivo. We found a direct correlation between the percent of WM cells in the BM to the level of hypoxia. The level of hypoxia was in a direct correlation with the number of circulating WM cells in vivo. Then we mimicked the hypoxic conditions in vitro and found that cell progression (MTT) and cell cycle (PI staining) were decreased, but apoptosis of WM cells was not affected (AnnexinV-PI staining). These results were confirmed by decreased activation of the PI3K signaling pathway (p-PI3K, p-AKT, p-GSK) and decreased expression of cell cycle proteins (p-Rb, CDK2, CDK4, cyclin-D1 and p-cyclin-E); however, no change was observed in apoptosis-related proteins (PARP, cleaved caspase-3, -8 and -9). Moreover, hypoxia decreased the expression of E-cadherin which contributed to reduction of adhesion of WM cells to the BM stromal cells. At the same time, hypoxic WM cells exhibited increased CXCR4 surface expression and augmented migratory abilities in the presence of SDF-1. Neither the expression of integrins (VLA-4) nor the adhesion of WM cells to fibronectin was affected by hypoxia. This data indicates the conservation of the homing machinery of the WM to the BM despite the hypoxic conditions accompanied by increased chemotactic ability. When hypoxic and normoxic cells were injected to naïve mice, hypoxic cells showed enhanced homing to the BM and tumor colonization. Similarly, hypoxic cells which were reoxygenated in vitro showed more proliferation, cell cycle and activation of proliferative signaling pathways compared to normoxic cells. Conclusions We report that WM tumor growth in the BM increases hypoxia, and that hypoxia induces cell cycle arrest, and less proliferation of cells with no apoptosis. At the same time, hypoxia induces egress of WM cells from the BM through reduction of E-cadherin expression and decreased adhesion. When in the circulation, previously hypoxic cells home more efficiently to the BM through increased expression of CXCR4 and chemotaxis, and through maintaining expression of integrins and adhesion to fibronectin. When in the new oxygenated BM niche, hypoxic WM cells recover and colonize the new niche better than normoxic cells, and reoxygenated hypoxic cells have faster cell cycle and proliferation rate. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 39 (10) ◽  
Author(s):  
Caizhi Chen ◽  
Long Shu ◽  
Wen Zou

Abstract Cancer incidence rate has increased so much that it is the second leading cause of deaths worldwide after cardiovascular diseases. Sensitive and specific biomarkers are needed for an early diagnosis of cancer and in-time treatment. Recent studies have found that long non-coding RNAs (lncRNAs) participate in cancer tumorigenesis. LncRNA P73 antisense RNA 1T (TP73-AS1), also known as KIAA0495 and p53-dependent apoptosis modulator (PDAM), is located in human chromosomal band 1p36.32 and plays a crucial role in many different carcinomas. This review summarizes current findings on the role of TP73-AS1 and its signaling pathways in various cancers, including glioma, esophageal squamous cell carcinoma (ESCC), hepatocellular carcinoma (HCC), colorectal cancer (CRC), osteosarcoma, gastric cancer (GC), clear cell renal cell carcinoma (ccRCC), breast cancer (BC), bladder cancer, ovarian cancer, cholangiocarcinoma (CCA), lung cancer, and pancreatic cancer. Its aberrant expression generally correlates with clinicopathological characterization of patients. Moreover, TP73-AS1 regulates proliferation, migration, invasion, apoptosis, and chemoresistance cancer mechanisms, both in vivo and in vitro, through different signaling pathways. Therefore, TP73-AS1 may be considered as a marker for diagnosis and prognosis, also as a target for cancer treatment.


Oncogenesis ◽  
2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Yang Sun ◽  
Chen Ye ◽  
Wen Tian ◽  
Wen Ye ◽  
Yuan-Yuan Gao ◽  
...  

AbstractTransient receptor potential canonical (TRPC) channels are the most prominent nonselective cation channels involved in various diseases. However, the function, clinical significance, and molecular mechanism of TRPCs in colorectal cancer (CRC) progression remain unclear. In this study, we identified that TRPC1 was the major variant gene of the TRPC family in CRC patients. TRPC1 was upregulated in CRC tissues compared with adjacent normal tissues and high expression of TRPC1 was associated with more aggressive tumor progression and poor overall survival. TRPC1 knockdown inhibited cell proliferation, cell-cycle progression, invasion, and migration in vitro, as well as tumor growth in vivo; whereas TRPC1 overexpression promoted colorectal tumor growth and metastasis in vitro and in vivo. In addition, colorectal tumorigenesis was significantly attenuated in Trpc1-/- mice. Mechanistically, TRPC1 could enhance the interaction between calmodulin (CaM) and the PI3K p85 subunit by directly binding to CaM, which further activated the PI3K/AKT and its downstream signaling molecules implicated in cell cycle progression and epithelial-mesenchymal transition. Silencing of CaM attenuated the oncogenic effects of TRPC1. Taken together, these results provide evidence that TRPC1 plays a pivotal oncogenic role in colorectal tumorigenesis and tumor progression by activating CaM-mediated PI3K/AKT signaling axis. Targeting TRPC1 represents a novel and specific approach for CRC treatment.


Sign in / Sign up

Export Citation Format

Share Document