Significance of changes in TNF-α and IL-10 levels in the progression of heart failure subsequent to myocardial infarction

2006 ◽  
Vol 291 (1) ◽  
pp. H106-H113 ◽  
Author(s):  
K. Kaur ◽  
A. K. Sharma ◽  
P. K. Singal

We tested whether a decrease in the ratio of interleukin-10 (IL-10) to tumor necrosis factor-α (TNF-α) correlates with the decrease in cardiac function in heart failure. It has been suggested that TNF-α plays a role in the progression of heart failure, and the effect of TNF-α in many tissues is modulated by IL-10. Any relation of these two cytokines to heart failure has never been examined. Cardiac function was assessed by echocardiographic and hemodynamic techniques in coronary artery-ligated rats at 1, 4, 8, and 16 wk after myocardial infarction (MI). Membrane-bound and soluble fractions of TNF-α and IL-10 proteins, the ratio of TNF-α to IL-10, and TNF-α and IL-10 mRNA levels were analyzed. Losartan was used to modify cardiac function in rats 4 wk after MI to further validate the relation between the IL-10-to-TNF-α ratio and cardiac function. Cardiac function deteriorated with time in all coronary artery-ligated groups, with severe failure at 16 wk after MI. Membrane-bound and soluble TNF-α protein fractions were increased 1 and 4 wk after MI, whereas TNF -α mRNA was increased 4 and 8 wk after MI. Membrane-bound IL-10 protein and mRNA levels were decreased 4, 8, and 16 wk after MI. The decrease in the IL-10-to-TNF-α protein ratio in all coronary artery-ligated groups correlated with the depressed cardiac function. Losartan improved cardiac function, membrane-bound and soluble TNF-α and IL-10 protein levels, the ratio of IL-10 to TNF-α, and IL-10 mRNA. This study suggests that a decrease in IL-10 and IL-10-to-TNF-α ratio correlates with depressed cardiac function.

2018 ◽  
Vol 45 (5) ◽  
pp. 1797-1806 ◽  
Author(s):  
Anbang Han ◽  
Yingdong Lu ◽  
Qi Zheng ◽  
Jian Zhang ◽  
YiZhou Zhao ◽  
...  

Background/Aims: Qiliqiangxin (QL), a traditional Chinese medicine, has been demonstrated to be effective and safe for the treatment of chronic heart failure. Left ventricular (LV) remodeling causes depressed cardiac performance and is an independent determinant of morbidity and mortality after myocardial infarction (MI). Our previous studies have shown that QL exhibits cardiac protective effects against heart failure after MI. The objective of this study was to explore the effects of QL on myocardial fibrosis in rats with MI and to investigate the underlying mechanism of these effects. Methods: A rat model of acute myocardial infarction was induced by ligating the left anterior descending coronary artery. The rats were treated with QL (1.0 g/kg/day) for 4 weeks after surgery. Echocardiography and histology examination were performed to evaluate heart function and fibrosis, respectively. Protein levels of transforming growth factor-β1 (TGF-β1), phosphorylated Smad3 (p-Smad3), phosphorylated Smad7 (p-Smad7), collagen I (Col- I), alpha smooth muscle actin (a-SMA), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), nuclear factor κB (NF-κB), and phosphorylated inhibitor of kappa B alpha (p-IκBα) were measured by western blot analysis. Results: QL treatment ameliorated adverse cardiac remodeling 8 weeks after AMI, including better preservation of cardiac function, decreased inflammation, and reduced fibrosis. In addition, QL treatment reduced Col-I, a-SMA, TGF-β1, and p-Smad3 expression levels but increased p-Smad7 levels in postmyocardial infarct rat hearts. QL administration also reduced the elevated levels of cardiac inflammation mediators, such as TNF-α and IL-6, as well as NF-κB and p-IκBα expression. Conclusions: QL therapy exerted protective effects against cardiac remodeling potentially by inhibiting TGF-β1/Smad3 and NF-κB signaling pathways, thereby preserving cardiac function, as well as reducing myocardial inflammation and fibrosis.


2013 ◽  
Vol 114 (8) ◽  
pp. 979-987 ◽  
Author(s):  
Soochan Bae ◽  
Sylvia S. Singh ◽  
Hyeon Yu ◽  
Ji Yoo Lee ◽  
Byung Ryul Cho ◽  
...  

Accumulating evidence suggests that vitamin D deficiency plays a crucial role in heart failure. However, whether vitamin D signaling itself plays an important role in cardioprotection is poorly understood. In this study, we examined the mechanism of modulating vitamin D signaling on progression to heart failure after myocardial infarction (MI) in mice. Vitamin D signaling was activated by administration of paricalcitol (PC), an activated vitamin D analog. Wild-type (WT) mice underwent sham or MI surgery and then were treated with either vehicle or PC. Compared with vehicle group, PC attenuated development of heart failure after MI associated with decreases in biomarkers, apoptosis, inflammation, and fibrosis. There was also improvement of cardiac function with PC treatment after MI. Furthermore, vitamin D receptor (VDR) mRNA and protein levels were restored by PC treatment. Next, to explore whether defective vitamin D signaling exhibited deleterious responses after MI, WT and VDR knockout (KO) mice underwent sham or MI surgery and were analyzed 4 wk after MI. VDR KO mice displayed a significant decline in survival rate and cardiac function compared with WT mice after MI. VDR KO mice also demonstrated a significant increase in heart failure biomarkers, apoptosis, inflammation, and fibrosis. Vitamin D signaling promotes cardioprotection after MI through anti-inflammatory, antifibrotic and antiapoptotic mechanisms.


2011 ◽  
Vol 301 (2) ◽  
pp. H459-H468 ◽  
Author(s):  
Meimei Yin ◽  
Iwan C. C. van der Horst ◽  
Joost P. van Melle ◽  
Cheng Qian ◽  
Wiek H. van Gilst ◽  
...  

Metformin is the first choice drug for the treatment of patients with diabetes, but its use is debated in patients with advanced cardiorenal disease. Epidemiological data suggest that metformin may reduce cardiac events, in patients both with and without heart failure. Experimental evidence suggests that metformin reduces cardiac ischemia-reperfusion injury. It is unknown whether metformin improves cardiac function (remodeling) in a long-term post-MI remodeling model. We therefore studied male, nondiabetic, Sprague-Dawley rats that were subjected to either myocardial infarction (MI) or sham operation. Animals were randomly allocated to treatment with normal water or metformin-containing water (250 mg·kg−1·day−1). At baseline, 6 wk, and 12 wk, metabolic parameters were analyzed and oral glucose tolerance tests (OGTT) were performed. Echocardiography and hemodynamic parameters were assessed 12 wk after MI. In the MI model, infarct size was significantly smaller after 12-wk metformin treatment (29.6 ± 3.2 vs. 38.0 ± 2.2%, P < 0.05). Moreover, metformin resulted in less left ventricular dilatation (6.0 ± 0.4 vs. 7.6 ± 0.6 mm, P < 0.05) and preservation of left ventricular ejection fraction (65.8 ± 3.7% vs. 48.6 ± 5.6%, P < 0.05) compared with MI control. The improved cardiac function was associated with decreased atrial natriuretic peptide mRNA levels in the metformin-treated group (50% reduction compared with MI, P < 0.05). Insulin resistance did not occur during cardiac remodeling (as indicated by normal OGTT) and fasting glucose levels and the pattern of the OGTT were not affected by metformin. Molecular analyses suggested that altered AMP kinase phosphorylation status and low insulin levels mediate the salutary effects of metformin. Altogether our results indicate that metformin may have potential to attenuate heart failure development after myocardial infarction, in the absence of diabetes and independent of systemic glucose levels.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
T Kadoguchi ◽  
K Shimada ◽  
A Hamad ◽  
T Aikawa ◽  
S Ouchi ◽  
...  

Abstract Background Left ventricular (LV) remodeling, through excessive inflammation, leads to heart failure. Exercise (Ex) training is associated with a risk reduction in heart failure through direct and indirect mechanisms by which Ex contributes an anti-inflammatory effect. During Ex, contracting muscle fibers release myokines, including interleukins (ILs), tumor necrosis factor α (TNF-α), follistatin-like protein 1 (FSTL-1), and fibroblast growth factor 21 (FGF-21), into the bloodstream. These myokines may have beneficial effects on other damaged organs, such as an infarcted myocardium, through anti-inflammatory effects. However, the exact mechanisms of the anti-inflammatory effects of voluntary Ex in myocardial infarction (MI) are poorly understood. Therefore, we investigated the effect of voluntary Ex on cardiac remodeling and inflammation, the relationship between cardiac remodeling and skeletal muscle (SKM) response, and circulating myokine levels in a mouse model of MI. Methods Twelve-week-old male C57BL/6J mice were used and divided into the following 4 groups: sham operation (Sham), MI, Sham+Ex, and MI+Ex. MI was induced by ligation of the left anterior descending coronary artery. Ex groups began voluntary wheel running for 4 weeks after the operation. An echocardiography was performed at baseline and 4 weeks after the operation. The mRNA levels in the LV infarcted area and SKM were measured with RT-PCR and western blot analysis. Plasma levels of myokines were also measured with immunoassays. Results Four weeks after MI induction, echocardiographic evaluation showed that the MI mice had a larger LV end-diastolic diameter (LVEDD) and end-systolic diameter (LVESD) than the Sham mice. The MI mice also showed higher mRNA levels of TNF-α, IL-1β, IL-6, and IL-10 in the LV tissue when compared to the Sham mice. These changes were significantly ameliorated in the MI+Ex mice. Interestingly, in the MI+Ex mice, mRNA levels of IL-6, IL-1β, FSTL-1, and FGF-21 in the SKM were significantly higher than in the MI mice, while there were no significant differences in TNF-α and IL-10 levels in all groups. Similarly, protein expression levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, sirtuin-1, and mitochondrial transcriptional factor A of mitochondrial function markers in SKM were also significantly higher in the MI+Ex mice than in the MI mice. Furthermore, there were significant correlations between plasma levels of IL-1β, but not other myokines, and LVEDD, and LVESD. In addition, there was also a significant correlation between the SKM IL-1β level and LVESD in the Sham+Ex mice (all, P<0.05). Conclusions Amelioration of cardiac remodeling and inflammation by voluntary Ex is associated with increased myokines, especially IL-1β, in a MI mouse model. These results suggest that increased myokine levels, through voluntary exercise, may play an important role in the prevention of cardiac remodeling after MI.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yu Xu ◽  
Yan Pan ◽  
Xingxing Wang ◽  
Aidong Chen ◽  
Xinyu Tang ◽  
...  

Salusin-β is a biologically active peptide with 20 amino acids that exerts several cardiovascular activity-regulating effects, such as regulating vascular endothelial function and the proliferation of vascular smooth muscle cells. However, the regulatory effects of salusin-β in myocardial infarction-induced chronic heart failure (CHF) are still unknown. The current study is aimed at investigating the effects of silencing salusin-β on endothelial function, cardiac function, vascular and myocardial remodeling, and its underlying signaling pathways in CHF rats induced by coronary artery ligation. CHF and sham-operated (Sham) rats were subjected to tail vein injection of adenoviral vectors encoding salusin-β shRNA or a control-shRNA. The coronary artery (CA), pulmonary artery (PA), and mesenteric artery (MA) were isolated from rats, and isometric tension measurements of arteries were performed. Compared with Sham rats, the plasma salusin-β, leptin and visfatin levels and the salusin-β protein expression levels of CA, PA, and MA were increased, while the acetylcholine- (ACh-) induced endothelium-dependent vascular relaxation of CA, PA, and MA was attenuated significantly in CHF rats and was improved significantly by salusin-β gene knockdown. Salusin-β knockdown also improved cardiac function and vascular and myocardial remodeling, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) levels, and decreased NAD(P)H oxidase activity, NOX-2 and NOX-4 expression, and reactive oxygen species (ROS) levels in arteries in CHF rats. The effects of salusin-β knockdown in CHF rats were attenuated significantly by pretreatment with the NOS inhibitor L-NAME. These results indicate that silencing salusin-β contributes to the improvement of endothelial function, cardiac function, and cardiovascular remodeling in CHF by inhibiting NAD(P)H oxidase-ROS generation and activating eNOS-NO production.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Brenda B Su ◽  
Zhuo Sun ◽  
Hiroko Fujii ◽  
Jun Wu ◽  
Zhihong Li ◽  
...  

Background: Inhibition of toll-like receptors (TLRs) may be a new treatment to prevent congestive heart failure during post-myocardial infarction (MI) surgical interventions. TLR2 knockout (KO) mice provide an opportunity to predict the effects of inhibitors and to establish the mechanisms responsible for their beneficial effects. This study was performed to establish the pathways responsible for myocardial protection in the absence of TLRs after MI. Methods and Results: In vivo study: MI was induced in TLR2 KO and wild-type (WT) C56B/6J mice by anterior coronary artery ligation. Cardiac function was preserved in the KO mice compared to the WT mice (echocardiography demonstrated higher fractional shortening and fractional area change, p<0.05) at 3, 7 and 28 days after the MI. To evaluate the mechanisms responsible for the functional improvements, cardiac cytokine production was measured. TNF-α, IL-1β and IL-6 were significantly decreased in the infarct region of KO compared to WT mice at 3 days post-MI. On day 7, IL-6 production was significantly decreased in the infarct region and TNF-α was decreased in the non-infarcted region of KO compared to WT mice. Phosphorylation of p38 MAPK was prevented, and the number of TUNEL positive nuclei was reduced in the infarct region of KO compared to WT mice. Phosphorylation of Akt was upregulated in the non-infarcted region of KO mice at 3 days after MI. There were no differences in the phosphorylation of ERK or JNK at the same time point. In vitro study: Myocardial fibroblasts were isolated from KO and WT mice, cultured, and then exposed to hydrogen peroxide. Compared to cells from WT mice, cells from KO mice exhibited greater protection (less cell death) and reduced p38 phosphorylation as early as 5 and 15 minutes after hydrogen peroxide stimulation. Conclusions: TLR2 KO mice allow the assessment of the potential benefits of TLR inhibitors. Reducing TLR2 after an infarction will decrease cytokine production and cell death in a p38 MAPK-dependent manner, which in turn will contribute to the preservation of cardiac function. Early inhibition of TLR2 function may represent a new target to prevent heart failure after MI.


Author(s):  
Carina Henning ◽  
Anna Branopolski ◽  
Paula Follert ◽  
Oksana Lewandowska ◽  
Aysel Ayhan ◽  
...  

Abstract Background Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial β1 integrin in these cardioprotective ischemic events is largely unknown. Objective In this study we investigated whether endothelial β1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction. Methods Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited β1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography. Results Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required β1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, β1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial β1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion. Conclusion We showed that endothelial β1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Changwon Kho ◽  
Ahyoung Lee ◽  
Dongtak Jeong ◽  
Jae Gyun Oh ◽  
Antoine Chaanine ◽  
...  

Background: The cardiac calcium ATPase, SERCA2a, is a critical pump responsible for Ca2+ re-uptake during excitation-contraction coupling. Impaired Ca2+ uptake resulting from decreased expression and reduced activity of SERCA2a is a hallmark of heart failure. Accordingly, restoration of SERCA2a expression by gene transfer has proved to be effective in improving cardiac function in heart-failure patients, as well as in animal models. However, the underlying mechanisms of SERCA2a’s dysfunction remain incompletely understood. Methods and Results: In this study, we show that SERCA2a is modified by SUMO1 at lysine sites 480 and 585 and that this SUMOylation is essential for preserving SERCA2a ATPase activity and stability in mouse and human cells. SUMO1 and SERCA2a SUMOylation levels were both decreased in mouse and pig models of heart failure and failing human left ventricles. To determine whether reduced SUMO1 levels are responsible for reduced SERCA2a protein levels and reduced cardiac function, we used an adenovirus associated virus-mediated gene delivery approach to up-regulate SUMO1 in trans aortic constriction-induced mouse model of heart failure. We found that increasing SUMO1 levels led to a restoration of SERCA2a levels, improved hemodynamic performance, and reduced mouse mortality. By contrast, down-regulation of SUMO1 using small hairpin RNA accelerated cardiac functional deterioration and was accompanied by decreased SERCA2a function. Conclusion: In this study, we study a new mechanism for modulation of SERCA2a activity and beneficial effects of SUMO1 in the setting of heart failure. It suggests that changes in post-translational modifications of SERCA2a could negatively affect cardiac function in heart failure. Our data may provide a new platform for the design of therapeutic strategies for heart failure.


Sign in / Sign up

Export Citation Format

Share Document