Fibrinolysis-inhibitory capacity of clot-embedded surfactant is enhanced by SP-B and SP-C

2003 ◽  
Vol 284 (1) ◽  
pp. L69-L76 ◽  
Author(s):  
Philipp Markart ◽  
Clemens Ruppert ◽  
Friedrich Grimminger ◽  
Werner Seeger ◽  
Andreas Günther

Incorporation of pulmonary surfactant into fibrin inhibits its plasmic degradation. In the present study we investigated the influence of surfactant proteins (SP)-A, SP-B, and SP-C on the fibrinolysis-inhibitory capacity of surfactant phospholipids. Plasmin-induced fibrinolysis was quantified by means of a 125I-fibrin plate assay, and surfactant incorporation into polymerizing fibrin was analyzed by measuring the incorporation of3H-labeled L-α-dipalmitoylphosphatidylcholine into the insoluble clot material. Incorporation of a calf lung surfactant extract (Alveofact) and an organic extract of natural rabbit large surfactant aggregates (LSA) into a fibrin clot revealed a stronger inhibitory effect on plasmic cleavage of this clot than a synthetic phospholipid mixture (PLX) and unprocessed LSA. Reconstitution of PLX with SP-B and SP-C increased, whereas reconstitution with SP-A decreased, the fibrinolysis-inhibitory capacity of the phospholipids. The SP-B effect was paralleled by an increased incorporation of phospholipids into fibrin. We conclude that the inhibitory effect of surfactant incorporation into polymerizing fibrin on its susceptibility to plasmic cleavage is enhanced by SP-B and SP-C but reduced by SP-A. In the case of SP-B, increased phospholipid incorporation may underlie this finding.

2002 ◽  
Vol 283 (5) ◽  
pp. L1079-L1085 ◽  
Author(s):  
R. Schmidt ◽  
U. Meier ◽  
P. Markart ◽  
F. Grimminger ◽  
H. G. Velcovsky ◽  
...  

Deterioration of pulmonary surfactant function has been reported in interstitial lung disease; however, the molecular basis is presently unclear. We analyzed fatty acid (FA) profiles of several surfactant phospholipid classes isolated from large-surfactant aggregates of patients with idiopathic pulmonary fibrosis (IPF; n = 12), hypersensitivity pneumonitis ( n = 5), and sarcoidosis ( n = 12). Eight healthy individuals served as controls. The relative content of palmitic acid in phosphatidylcholine was significantly reduced in IPF (66.8 ± 2.5%; means ± SE; P < 0.01) but not in hypersensitivity pneumonitis (78.5 ± 1.8%) and sarcoidosis (78.2 ± 3.1%; control 80.1 ± 0.7%). In addition, the phosphatidylglycerol FA profile was significantly altered in the IPF patients, with a lower relative content of its major FA, oleic acid, at the expense of saturated FA. In the phosphatidylcholine class, a significant correlation between the impairment of biophysical surfactant function and decreased percentages of palmitic acid was noted. We conclude that significant alterations in the FA profile of pulmonary surfactant phospholipids occur predominantly in IPF and may contribute to the disturbances of alveolar surface activity in this disease.


1994 ◽  
Vol 267 (5) ◽  
pp. L618-L624 ◽  
Author(s):  
A. Gunther ◽  
M. Kalinowski ◽  
A. Elssner ◽  
W. Seeger

Polymerization of fibrin in the presence of pulmonary surfactant was recently noted to induce incorporation of phospholipids into the insoluble clot material, thereby effecting severe loss of surface activity (W. Seeger, A. Elssner, A. Gunther, H.-J. Kramer, and H. O. Kalinowski. Am. J. Respir. Cell Mol. Biol. 9: 213'220, 1993). In the present study, we investigated the influence of such incorporation of calf lung surfactant extract (CLSE) on the enzymatic cleavage of the fibrin network with the use of plasmin, trypsin, or elastase. Employing a fibrin-plate assay, the proteolytic release of radioactivity originating from 125I-labeled fibrinogen was assessed, and the pattern of split products was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis technique. Surface activity of CLSE was measured in the pulsating bubble surfactometer. When incorporated into the fibrin clot, CLSE inhibited the cleavage of fibrin by all proteases in a dose-dependent manner without affecting the profile of scission products. Inhibition of plasmin-induced clot lysis was also noted on incorporation of CLSE into clotted plasma and on incorporation of dipalmitoylphosphatidylcholine into fibrin polymers. In contrast, corresponding concentrations of CLSE added to the incubation medium after preformation of the fibrin matrix did not substantially influence the kinetics of fibrinolysis. CLSE incorporation into the nascent fibrin clot resulted in complete loss of surface activity, but adsorption and surface tension-lowering properties were largely restored by subsequent plasmic clot lysis. Arising fibrin split products were shown to display similar inhibitory strength on CLSE surface activity compared with fibrinogen split products.(ABSTRACT TRUNCATED AT 250 WORDS


PEDIATRICS ◽  
1979 ◽  
Vol 63 (6) ◽  
pp. 855-859
Author(s):  
Zvi Friedman ◽  
Abraham Rosenberg

A low-birth-weight infant, suffering from chronic bronchopulmonary dysplasia following hyaline membrane disease and recurrent episodes of necrotizing enterocolitis, developed biochemical evidence of essential fatty acid (EFA) deficiency in the plasma. Fatty acid composition of phosphatidylcholine and phosphatidylglycerol in the lung lavage fluid was abnormal. Plasma changes includcd a decrease in the level of linoleic acid and an increased level of palmitic, palmitoleic, oleic, and 5,8, 11-eicosatrienoic acids, the ratio of 5,8,11-eicosatrienoic acid to arachidonic acid being &gt; 0.4:1. A lower than normal level of palmitic acid and an increased level of palmitoleic and oleic acids were seen in pulmonary surfactant phospholipid components. Upon treatment and recovery from EFA deficiency, the fatty acid pattern both in plasma and surfactant phospholipids returned to normal along with clinical improvement. An association between EFA deficiency and altered fatty acid composition of pulmonary surfactant phospholipids is suggested.


1987 ◽  
Vol 63 (2) ◽  
pp. 692-698 ◽  
Author(s):  
W. R. Rice ◽  
G. F. Ross ◽  
F. M. Singleton ◽  
S. Dingle ◽  
J. A. Whitsett

Secretion of [3H]phosphatidylcholine ([3H]PC) from isolated rat pulmonary type II epithelial cells was inhibited by the surfactant-associated protein of Mr = 35,000 (SAP-35) purified from canine lung surfactant. SAP-35 inhibited [3H]PC secretion in a dose-dependent manner and significantly inhibited basal, phorbol ester, beta-adrenergic, and P2-purinergic agonist-induced [3H]PC secretion. SAP-35 significantly inhibited [3H]PC secretion from 1 to 3 h after treatment. The IC50 for inhibition of [3H]PC secretion by canine SAP-35 was 1–5 X 10(-6) g/ml and was similar for inhibition of both basal and secretagogue-stimulated release. Heat denaturation of SAP-35, addition of monoclonal anti-SAP-35 antibody, reduction and alkylation of SAP-35, or association of SAP-35 with phospholipid vesicles reversed the inhibitory effect on secretagogue-induced secretion. Inhibitory effects of SAP-35 were observed 3 h after cells were washed with buffer that did not contain SAP-35. Although SAP-35 enhanced reassociation of surfactant phospholipid with isolated type II cells, its inhibitory effect on secretion of [3H]PC did not result from stimulation of reuptake of secreted [3H]PC by type II cells. The inhibition of phospholipid secretion by SAP-35 was also not due to inhibition of PC or disaturated PC synthesis by SAP-35. SAP-35, the major phospholipid-associated protein in pulmonary surfactant, is a potent inhibitor of surfactant secretion from type II cells in vitro and may play an important role in homeostasis of surfactant in the alveolar space.


1977 ◽  
Vol 38 (02) ◽  
pp. 0420-0428 ◽  
Author(s):  
J. L Moake ◽  
P. L Cimo ◽  
K Widmer ◽  
D. M Peterson ◽  
J. R Gum

SummaryIn dilute suspensions of platelet-rich plasma (PRP) or gel-separated platelets (GSP), dibutyryl-cAMP (DBcAMP) and monobutyryl-cAMP inhibited platelet-mediated fibrin clot retraction in concentrations of 2–3 × 10–6M, with complete inhibition at 1–3 × 10–4M. Prostaglandin E1 (PGE1), which inhibited fibrin clot retraction in concentrations greater than 1.5–3 × 10–8M, was a more effective inhibitor than either PGE2 or PGF2α. In the presence of theophylline (10–4M), concentrations of DBcAMP, PGE1 PGE2 and PGF2α necessary to inhibit fibrin clot retraction were reduced 50-fold for DBcAMP and 2.5 to 20-fold for the prostaglandins. In dilute PRP or GSP, inhibition of fibrin clot retraction does not result from inhibition of thrombin-induced platelet aggregation. Thus, compounds which increase platelet cAMP levels result in the inhibition of platelet-mediated fibrin clot retraction, and this inhibitory effect may be mediated, at least in part, through suppression of platelet contractility. Cyclic GMP, dibutyryl-cGMP and carbamylcholine-Cl (which stimulates guanylate cyclase) did not influence fibrin clot retraction, and did not prevent inhibition of fibrin clot retraction by DBcAMP and PGE?. Colchicine, in concentrations known to disrupt platelet microtubules (2.5 × 10–6M to 2.5 x 10–3M), had little inhibitory effect on either fibrin clot retraction or platelet (3H)-serotonin release.


1970 ◽  
Vol 23 (02) ◽  
pp. 202-210 ◽  
Author(s):  
R Bishop ◽  
H Ekert ◽  
G Gilchrist ◽  
E Shanbrom ◽  
L Fekete

SummaryA new fibrin plate technic for evaluating components of the fibrinolytic system has been developed. It provides quick, accurate, and easily interpreted results for the fibrinolytic profile. The standardized human plasminogen-free fibrin plates can be produced in bulk and stored for prolonged periods of time. A test specimen placed in a well punched in the buffered agarose gel diffuses into the agar and lyses the fibrin clot, forming a clear reaction zone. The zone diameter is directly proportional to the log of the percent concentration of available fibrinolytic enzyme in the specimen. The plates may be used to quantitate total plasminogen, and estimate available plasmin and active plasmin. A good correlation between results obtained using these fibrin plates and caseinolytic methods was found. Performance and interpretation of tests of fibrinolysis done on these new fibrin plates indicate that it may be the most sensitive technic available for clinical laboratory work.


1988 ◽  
Vol 254 (1) ◽  
pp. 67-71 ◽  
Author(s):  
B Rüstow ◽  
Y Nakagawa ◽  
H Rabe ◽  
K Waku ◽  
D Kunze

1. Phosphatidylinositol (PI) is a minor component of lung surfactant which may be able to replace the functionally important phosphatidylglycerol (PG) [Beppu, Clements & Goerke (1983) J. Appl. Physiol. 55, 496-502] without disturbing lung function. The dipalmitoyl species is one of the main species for both PI (14.4%) and PG (16.9%). Besides the C16:0--C16:0 species, the C16:0--C18:0, C16:0--C18:1, C16:0--C18:2 and C18:0--C18:1 species showed comparable proportions in the PG and PI fractions. These similarities of the species patterns and the acidic character of both phospholipids could explain why surfactant PG may be replaced by PI. 2. PI and PG were radiolabelled by incubation of microsomal fractions with [14C]glycerol 3-phosphate (Gro3P). For 11 out of 14 molecular species of PI and PG we measured comparable proportions of radioactivity. The radioactivity of these 11 species accounted together for more than 80% of the total. The addition of inositol to the incubation system decreased the incorporation in vitro of Gro3P into PG and CDP-DG (diacylglycerol) of lung microsomes (microsomal fractions), but did not change the distribution of radioactivity among the molecular species of PG. These results supported the idea that both acidic surfactant phospholipids may be synthesized de novo from a common CDP-DG pool in lung microsomes.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1259
Author(s):  
Maksymilian Dziura ◽  
Basel Mansour ◽  
Mitchell DiPasquale ◽  
P. Charukeshi Chandrasekera ◽  
James W. Gauld ◽  
...  

In this review, we delve into the topic of the pulmonary surfactant (PS) system, which is present in the respiratory system. The total composition of the PS has been presented and explored, from the types of cells involved in its synthesis and secretion, down to the specific building blocks used, such as the various lipid and protein components. The lipid and protein composition varies across species and between individuals, but ultimately produces a PS monolayer with the same role. As such, the composition has been investigated for the ways in which it imposes function and confers peculiar biophysical characteristics to the system as a whole. Moreover, a couple of theories/models that are associated with the functions of PS have been addressed. Finally, molecular dynamic (MD) simulations of pulmonary surfactant have been emphasized to not only showcase various group’s findings, but also to demonstrate the validity and importance that MD simulations can have in future research exploring the PS monolayer system.


1996 ◽  
Vol 141 (8) ◽  
pp. 1571-1577 ◽  
Author(s):  
M. Tashiro ◽  
Y. Beppu ◽  
K. Sakai ◽  
H. Kido

1989 ◽  
Vol 257 (6) ◽  
pp. L421-L429 ◽  
Author(s):  
H. P. Haagsman ◽  
R. T. White ◽  
J. Schilling ◽  
K. Lau ◽  
B. J. Benson ◽  
...  

SP-A, a glycoprotein of pulmonary surfactant, consists of an NH2-terminal domain containing a collagen-like sequence and a COOH-terminal domain with sequence homology to several Ca2(+)-dependent lectins. We have compared the size, thermal stability, and secondary structure of recombinant SP-A, the product of a fibroblast line transfected with a single human gene encoding SP-A, with natural SP-A isolated from canine and human lungs. Our results suggest both recombinant and natural SP-A are assembled as large oligomers. More variability in the degree of oligomerization was observed with recombinant human SP-A than with natural canine SP-A. As shown by collagenase digestion, the full assembly of protein subunits was dependent on an intact collagen-like domain. The cysteines in the noncollagen domain of SP-A form intrachain bonds between residues 135-226 and 204-218. The circular dichroism spectra of both recombinant and natural SP-A were consistent with the presence of a collagen-like triple helix. As determined by the change in ellipticity at 205 nm, the thermal transition temperatures of canine, natural human, and recombinant SP-A were 51.5, 52.3, and 42.0 degrees C, respectively. These results suggest differences in the assembly and stability of the natural and recombinant proteins.


Sign in / Sign up

Export Citation Format

Share Document