Effect of smoking cessation on chronic waterpipe smoke inhalation-induced airway hyperresponsiveness, inflammation, and oxidative stress

2021 ◽  
Vol 320 (5) ◽  
pp. L791-L802
Author(s):  
Abderrahim Nemmar ◽  
Suhail Al-Salam ◽  
Sumaya Beegam ◽  
Nur E. Zaaba ◽  
Badreldin H. Ali

Waterpipe smoking (WPS) prevalence is increasing globally. Clinical and laboratory investigations reported that WPS triggers impairment of pulmonary function, inflammation, and oxidative stress. However, little is known if smoking cessation (SC) would reverse the adverse pulmonary effects induced by WPS. Therefore, we evaluated the impact of WPS inhalation for 3 mo followed by 3 mo of SC (air exposure) compared with those exposed for either 3 or 6 mo to WPS or air (control) in C57BL/6 mice. To this end, various physiological, biochemical, and histological endpoints were evaluated in the lung tissue. Exposure to WPS caused focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with peribronchiolar moderate mixed inflammatory cells consisting of lymphocytes, macrophages, and neutrophil polymorphs. The latter effects were mitigated by SC. Likewise, SC reversed the increase of airway resistance and reduced the increase in the levels of myeloperoxidase, matrix metalloproteinase 9, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β in lung tissue induced by WPS. In addition, SC attenuated the increase of oxidative stress markers including 8-isoprostane, glutathione, and catalase induced by WPS. Similarly, DNA damage, apoptosis, and the expression of NF-κB in the lung induced by WPS inhalation were alleviated by CS. In conclusion, our data demonstrated, for the first time, to our knowledge, that SC-mitigated WPS inhalation induced an increase in airway resistance, inflammation, oxidative stress, DNA injury, and apoptosis, illustrating the benefits of SC on lung physiology.

2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


2013 ◽  
Vol 115 (9) ◽  
pp. 1316-1323 ◽  
Author(s):  
Abderrahim Nemmar ◽  
Haider Raza ◽  
Priya Yuvaraju ◽  
Sumaya Beegam ◽  
Annie John ◽  
...  

Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored “moasel ” tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.


2017 ◽  
Vol 117 (2) ◽  
pp. 218-229 ◽  
Author(s):  
K. Gil-Cardoso ◽  
I. Ginés ◽  
M. Pinent ◽  
A. Ardévol ◽  
X. Terra ◽  
...  

AbstractThe gastrointestinal alterations associated with the consumption of an obesogenic diet, such as inflammation, permeability impairment and oxidative stress, have been poorly explored in both diet-induced obesity (DIO) and genetic obesity. The aim of the present study was to examine the impact of an obesogenic diet on the gut health status of DIO rats in comparison with the Zucker (fa/fa) rat leptin receptor-deficient model of genetic obesity over time. For this purpose, female Wistar rats (n 48) were administered a standard or a cafeteria diet (CAF diet) for 12, 14·5 or 17 weeks and were compared with fa/fa Zucker rats fed a standard diet for 10 weeks. Morphometric variables, plasma biochemical parameters, myeloperoxidase (MPO) activity and reactive oxygen species (ROS) levels in the ileum were assessed, as well as the expressions of proinflammatory genes (TNF-α and inducible nitric oxide synthase (iNOS)) and intestinal permeability genes (zonula occludens-1, claudin-1 and occludin). Both the nutritional model and the genetic obesity model showed increased body weight and metabolic alterations at the final time point. An increase in intestinal ROS production and MPO activity was observed in the gastrointestinal tracts of rats fed a CAF diet but not in the genetic obesity model. TNF-α was overexpressed in the ileum of both CAF diet and fa/fa groups, and ileal inflammation was associated with the degree of obesity and metabolic alterations. Interestingly, the 17-week CAF group and the fa/fa rats exhibited alterations in the expressions of permeability genes. Relevantly, in the hyperlipidic refined sugar diet model of obesity, the responses to chronic energy overload led to time-dependent increases in gut inflammation and oxidative stress.


Author(s):  
Carmela Balistreri ◽  
Calogera Pisano ◽  
Giovanni Ruvolo

Ascending aorta aneurysm (AsAA) is a complex disease, currently defined an inflammatory disease. In the sporadic form, AsAA has, indeed, a complex physiopathology with a strong inflammatory basis, significantly modulated by genetic variants in innate/inflammatory genes, acting as independent risk factors and as largely evidenced in our recent studies performed during the last 10 years. Based on these premises, here, we want to revise the impact of reactive oxygen species (ROS) and oxidative stress on AsAA pathophysiology and consequently on the onset and progression of sporadic AsAA. This might consent to add other important pieces in the intricate puzzle of the pathophysiology of this disease with the translational aim to identify biomarkers and targets to apply in the complex management of AsAA, by facilitating the AsAA diagnosis currently based only on imaging evaluations, and the treatment exclusively founded on surgery approaches.


2021 ◽  
Vol 27 (2) ◽  
pp. 133-145
Author(s):  
E. N. Dudinskaya ◽  
L. V. Matchekhina ◽  
K. A. Eruslanova ◽  
O. A. Dogotar ◽  
L. P. Ryltseva ◽  
...  

The review summarizes the data of past two decades on the effect of hypertension on vascular aging and considers the effect of chronic inflammation and oxidative stress patterns on the remodeling of cardiovascular system. Clinical studies on the effect of various classes of antihypertensive drugs on age-associated parameters of vascular aging are discussed. These include endothelial dysfunction and arterial assessed by endothelium-dependent vasodilation, pulse wave velocity, augmentation index, cardiovascular index, thickness of the intima-media complex, and so on.


2020 ◽  
Vol 178 (2) ◽  
pp. 311-324
Author(s):  
Marisa Pfohl ◽  
Lishann Ingram ◽  
Emily Marques ◽  
Adam Auclair ◽  
Benjamin Barlock ◽  
...  

Abstract Perfluoroalkyl substances (PFAS) represent a family of environmental toxicants that have infiltrated the living world. This study explores diet-PFAS interactions and the impact of perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic (PFHxS) on the hepatic proteome and blood lipidomic profiles. Male C57BL/6J mice were fed with either a low-fat diet (10.5% kcal from fat) or a high fat (58% kcal from fat) high carbohydrate (42 g/l) diet with or without PFOS or PFHxS in feed (0.0003% wt/wt) for 29 weeks. Lipidomic, proteomic, and gene expression profiles were determined to explore lipid outcomes and hepatic mechanistic pathways. With administration of a high-fat high-carbohydrate diet, PFOS and PFHxS increased hepatic expression of targets involved in lipid metabolism and oxidative stress. In the blood, PFOS and PFHxS altered serum phosphatidylcholines, phosphatidylethanolamines, plasmogens, sphingomyelins, and triglycerides. Furthermore, oxidized lipid species were enriched in the blood lipidome of PFOS and PFHxS treated mice. These data support the hypothesis that PFOS and PFHxS increase the risk of metabolic and inflammatory disease induced by diet, possibly by inducing dysregulated lipid metabolism and oxidative stress.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Agata Stanek ◽  
Ewa Romuk ◽  
Tomasz Wielkoszyński ◽  
Stanisław Bartuś ◽  
Grzegorz Cieślar ◽  
...  

Objective. The aim of the study was to estimate the impact of whole-body cryotherapy (WBC) and subsequent kinesiotherapy on oxidative stress and lipid profile when performed in a closed cryochamber on healthy subjects. Material and Methods. The effect of ten WBC procedures lasting 3 minutes a day followed by a 60-minute session kinesiotherapy on oxidative stress and lipid profile in healthy subjects (WBC group, n=16) was investigated. The WBC group was compared to the kinesiotherapy only (KT; n=16) group. The routine parameters of oxidative stress (antioxidant enzymatic and nonenzymatic antioxidant status, lipid peroxidation products, total oxidative status (TOS), and oxidative stress index (OSI)) and lipid profile were estimated one day before the beginning and one day after the completion of the research program. Results. After treatment, in the WBC group, a significant decrease of oxidative stress markers (TOS and OSI) and a significant increase of total antioxidant capacity were observed. The activity of plasma SOD-Mn and erythrocyte total SOD increased significantly in the WBC group. In the KT group, the erythrocyte activity of total SOD, CAT, and GR decreased significantly after the treatment. The levels of T-Chol and LDL-Chol decreased significantly after treatment in both groups, but the observed decrease of these lipid parameters in the WBC group was higher in comparison to the KT group. The level of TG decreased significantly after treatment in the WBC group only. Conclusion. WBC performed in a closed cryochamber followed by kinesiotherapy improves lipid profile and decreases oxidative stress in healthy subjects.


Sign in / Sign up

Export Citation Format

Share Document