Mifepristone-inducible recombinant adenovirus attenuates paraquat-induced lung injury in rats

2014 ◽  
Vol 34 (1) ◽  
pp. 32-43 ◽  
Author(s):  
G-L Hong ◽  
Q-Q Cai ◽  
J-P Tan ◽  
X-Z Jiang ◽  
G-J Zhao ◽  
...  

Objective: To investigate the effects of overexpression of nuclear factor E2-related factor-2 (NRF2) on lung injury in rats exposed to paraquat (PQ) poisoning. Methods: A mifepristone (RU486)-inducible recombinant adenoviral vector carrying the human NRF2 gene (Ad-RUNRF2) was constructed and transfected via airway into the rats 7 days before the administration of RU486. Rats were orally challenged with PQ at 20 mg/kg 24 h after the injection of RU486. On days 0.5, 3 and 21 after PQ poisoning, the expressions of NRF2 and cytokines related to inflammation and oxidation in lung tissue were examined. Results: RU486 remarkably enhanced NRF2 mRNA and NRF2 protein levels in Ad-RUNRF2-transfected rats in a dose-dependent manner ( p < 0.01). PQ stimulated compensatory overexpression of NRF2, heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO-1) in lungs on days 0.5 and 3 after exposure ( p < 0.05), but depleted the expression of catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione (GSH), with an increased malondialdehyde (MDA) ( p < 0.05). However, pretreatment with Ad-RUNRF2 and RU486 strongly enhanced the expression levels of NRF2, HO-1, NQO-1, CAT and GSH-Px in the lungs of PQ intoxicated rats, with increased GSH and decreased MDA ( p < 0.05). Pretreatment with Ad-RUNRF2 and RU486 also strongly suppressed the PQ-induced activation of nuclear factor κB (NF-κB) and decreased the levels of tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). In addition, Ad-RUNRF2 and RU486 induction significantly reduced PQ-induced pathological changes in lungs and attenuated lung oedema and protein leakage caused by PQ ( p < 0.05). Conclusion: RU486-induced overexpression of NRF2 in lungs transfected with Ad-RUNRF2 can ameliorate PQ-induced lung injury by the activation of the NRF2-antioxidant response element (ARE) pathway.

2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


2014 ◽  
Vol 34 (2) ◽  
pp. 145-152 ◽  
Author(s):  
B Shen ◽  
W Wang ◽  
L Ding ◽  
Y Sao ◽  
Y Huang ◽  
...  

Aim: This study aimed to determine whether nuclear factor erythroid 2-related factor 2 antagonized the oxidative stress induced by di- N-butylphthalate (DBP) in testicular Leydig cells. Methods: Mouse TM3 testicular Leydig cells were treated with Nrf2 knockdown (KD) or overexpression in the presence and absence of DBP. Oxidative profiles were examined. Nrf2 target antioxidant genes were studied, and the effects of Nrf2 inducer sulphoraphane (SFN) were tested. Results: DBP induced intracellular oxidative stress to a similar extent with Nrf2 KD. Expression and protein levels of Nrf2 were increased together with its target genes, namely heme oxygenase 1, nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 and peroxiredoxin 6, following DBP stimulation. Use of SFN not only restored the intracellular oxidative toxicity but also cell proliferation and testosterone secretion in response to DBP. Conclusion: Increased Nrf2 activity, for example, by SFN can effectively antagonize the oxidative stress in testicular Leydig cells caused by DBP.


2020 ◽  
Vol 21 (6) ◽  
pp. 2007 ◽  
Author(s):  
Young-Chang Cho ◽  
Jiyoung Park ◽  
Sayeon Cho

Various herbal extracts containing luteolin-7-O-glucuronide (L7Gn) have been traditionally used to treat inflammatory diseases. However, systemic studies aimed at elucidating the anti-inflammatory and anti-oxidative mechanisms of L7Gn in macrophages are insufficient. Herein, the anti-inflammatory and anti-oxidative effects of L7Gn and their underlying mechanisms of action in macrophages were explored. L7Gn inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by transcriptional regulation of inducible NO synthase (iNOS) in a dose-dependent manner. The mRNA expression of inflammatory mediators, including cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α), was inhibited by L7Gn treatment. This suppression was mediated through transforming growth factor beta-activated kinase 1 (TAK1) inhibition that leads to reduced activation of nuclear factor-κB (NF-κB), p38, and c-Jun N-terminal kinase (JNK). L7Gn also enhanced the radical scavenging effect and increased the expression of anti-oxidative regulators, including heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H quinone oxidoreductase 1 (NQO1), by nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) activation. These results indicate that L7Gn exhibits anti-inflammatory and anti-oxidative properties in LPS-stimulated murine macrophages, suggesting that L7Gn may be a suitable candidate to treat severe inflammation and oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 856
Author(s):  
Eui-Jeong Han ◽  
Ilekuttige Priyan Shanura Fernando ◽  
Hyun-Soo Kim ◽  
Dae-Sung Lee ◽  
Areum Kim ◽  
...  

The present study evaluated the effects of (–)-loliolide isolated from Sargassum horneri (S. horneri) against oxidative stress and inflammation, and its biological mechanism in interferon (IFN)-γ/tumor necrosis factor (TNF)-α-stimulated HaCaT keratinocytes. The results showed that (–)-loliolide improved the cell viability by reducing the production of intracellular reactive oxygen species (ROS) in IFN-γ/TNF-α-stimulated HaCaT keratinocytes. In addition, (–)-loliolide effectively decreased the expression of inflammatory cytokines (interleukin (IL)-4 IL-6, IL-13, IFN-γ and TNF-α) and chemokines (CCL11 (Eotaxin), macrophage-derived chemokine (MDC), regulated on activation, normal T cell expressed and secreted (RANTES), and thymus and activation-regulated chemokine (TARC)), by downregulating the expression of epidermal-derived initial cytokines (IL-25, IL-33 and thymic stromal lymphopoietin (TSLP)). Furthermore, (–)-loliolide suppressed the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling, whereas it activated nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Interestingly, the cytoprotective effects of (–)-loliolide against IFN-γ/TNF-α stimulation were significantly blocked upon inhibition of HO-1. Taken together, these results suggest that (–)-loliolide effectively suppressed the oxidative stress and inflammation by activating the Nrf2/HO-1 signaling in IFN-γ/TNF-α-stimulated HaCaT keratinocytes.


2017 ◽  
Vol 312 (2) ◽  
pp. L155-L162 ◽  
Author(s):  
Hailin Zhao ◽  
Shiori Eguchi ◽  
Azeem Alam ◽  
Daqing Ma

Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that upregulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. Activation of Nrf2 has been shown to be protective against lung injury. In the lung, diverse stimuli including environmental oxidants, medicinal agents, and pathogens can activate Nrf2. Nrf2 translocates to the nucleus and binds to an ARE. Through transcriptional induction of ARE-bearing genes encoding antioxidant-detoxifying proteins, Nrf2 induces cellular rescue pathways against oxidative pulmonary injury, abnormal inflammatory and immune responses, and apoptosis. The Nrf2-antioxidant pathway has been shown to be important in the protection against various lung injuries including acute lung injury/acute respiratory distress syndrome and bronchopulmonary dysplasia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, and allergy and was widely examined for new therapeutic targets. The present review explores the protective role of Nrf-2 against lung injury and the therapeutic potential in targeting Nrf-2.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Si Huang ◽  
Haiyan Yuan ◽  
Wenqun Li ◽  
Xinyi Liu ◽  
Xiaojie Zhang ◽  
...  

Polygonatum sibiricum, a well-known life-prolonging tonic in Chinese medicine, has been widely used for nourishing nerves in the orient, but the underlying molecular mechanisms remain unclear. In this study, we found that P. sibiricum polysaccharides (PSP) ameliorated 1-methyl-4-phenyl-1,2.3,6-tetrahydropyridine- (MPTP-) induced locomotor activity deficiency and dopaminergic neuronal loss in an in vivo Parkinson’s disease (PD) mouse model. Additionally, PSP pretreatment inhibited N-methyl-4-phenylpyridine (MPP+) induced the production of reactive oxygen species, increasing the ratio of reduced glutathione/oxidized glutathione. In vitro experiments showed that PSP promoted the proliferation of N2a cells in a dose-dependent manner, while exhibiting effects against oxidative stress and neuronal apoptosis elicited by MPP+. These effects were found to be associated with the activation of Akt/mTOR-mediated p70S6K and 4E-BP1 signaling pathways, as well as nuclear factor erythroid 2-related factor 2- (Nrf2-) mediated NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (Gclc), and glutamate-cysteine ligase modulatory subunit (Gclm), resulting in antiapoptotic and antioxidative effects. Meanwhile, PSP exhibited no chronic toxicity in C57BJ/6 mice. Together, our results suggest that PSP can serve as a promising therapeutic candidate with neuroprotective properties in preventing PD.


2021 ◽  
Vol 18 (2) ◽  
pp. 1-34
Author(s):  
Mona Tawfik ◽  
Samy Makary ◽  
Mohammed Keshawy

IntroductionIschemic preconditioning (Ipre) provides protection against renal ischemia-reperfusion (I/R) injury with its associated remote organ damage. This study examined the enhancing protective effect of Ipre with levosimendan or cilostazol in I/R-induced kidney and lung injury in a rat model.Material and methodsRats were divided into: sham-operated, I/R control, Ipre control, I/R + cilostazol or levosimendan and Ipre + cilostazol or levosimendan. Drugs were given 30 min before left renal I/R or 4 cycles of Ipre just before renal ischemia.ResultsThe Ipre combined with the implemented drugs enhanced physio­logical antioxidant defense genes including renal nuclear factor erythroid 2-related factor 2 (Nrf2) and its dependent genes heme oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase-1 (NQO-1) and improved malondialdehyde and superoxide dismutase renal tissue levels. The combined effect improved I/R consequences for blood urea, creatinine, and creatinine clearance and improved blood oxygenation and metabolic acidosis. Moreover, the combination improved the renal soluble intercellular adhesion molecule (ICAM), tumor necrosis factor α (TNF-α) and interlukin-6 (IL-6) with histopathological improvement of tubular necrosis with a decrease in the apoptotic marker caspase-3 and an increase in the anti-apoptotic Bcl-2 expression.ConclusionsCilostazol or levosimendan potentiates the renoprotective effect of Ipre against renal I/R injury, associated with upregulation of antioxidant genes Nrf2, HO-1, and NOQ-1 expression.


2020 ◽  
Vol 133 (14) ◽  
pp. jcs241356 ◽  
Author(s):  
Tigist Y. Tamir ◽  
Brittany M. Bowman ◽  
Megan J. Agajanian ◽  
Dennis Goldfarb ◽  
Travis P. Schrank ◽  
...  

ABSTRACTNuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5′-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.


Sign in / Sign up

Export Citation Format

Share Document